AG Biostatistik
Unsere Gruppe wurde von 2010-2016 im
Emmy Noether Programm der
Deutschen Forschungsgemeinschaft (DFG) als Emmy
Noether-Nachwuchsgruppe "Statistical
Methods for Longitudinal Functional Data" gefördert. Publikationen, die aus dem Projekt entstanden, finden sich
hier.
Publikationen seit 2010
Happ C, Greven S (2016+): Multivariate Functional Principal Component Analysis for Data
Observed on Different (Dimensional) Domains. Journal of the American Statistical Association, to appear. Preprint.
Greven S, Scheipl F (2016+): Comment
on Smoothing parameter and model selection for general smooth models
by Simon Wood, Natalya Pya and Benjamin Säfken. Journal of the American Statistical Association, to appear.
Greven S, Scheipl F (2016+): A General Framework for Functional Regression Modelling.
Invited discussion paper, to appear in Statistical Modelling.
Scheipl F, Gertheiss J, Greven S (2016): Generalized
Functional Additive Mixed Models. Electronic Journal
of Statistics, 10(1):1455-1492.
Brockhaus S, Melcher M, Leisch F and Greven S
(2016+): Boosting flexible functional regression models with a high number of functional historical effects.
Statistics
and Computing, angenommen.
Scheipl F, Greven S (2016): Identifiability
in penalized function-on-function regression models. Electronic
Journal of Statistics, 10(1):495-526.
Cederbaum J, Pouplier M, Hoole P, Greven S
(2016):
Functional Linear Mixed Models for Irregularly or Sparsely
Sampled Data.
Statistical Modelling, 16(1): 67-88.
Augustin NH, Mattocks C, Faraway JJ, Greven S and
Ness AR (2016+): Modelling
a response as a function of high frequency count data: the
association between physical activity and fat mass. Statistical
Methods in Medical Research, angenommen. arXiv.
Shou H, Zipunnikov V, Crainiceanu C, Greven S
(2015): Structured
Functional Principal Component Analysis. Biometrics,
71: 247-257. arXiv
Scheipl F, Staicu A-M, Greven S (2015): Functional
Additive Mixed Models. Journal of Computational
and Graphical Statistics, 24(2), 477-501. arXiv
Brockhaus S, Scheipl F, Hothorn T und Greven
S (2015): The
Functional Linear Array Model. Statistical
Modelling, 15(3): 279-300.
Ivanescu AE, Staicu A-M, Scheipl F and Greven
S (2015): Penalized
function-on-function regression. Computational
Statistics, 30(2): 539-568.
Fuchs K, Scheipl F and Greven S
(2015): Penalized
scalar-on-functions
regression with Interaction Term. Computational
Statistics & Data Analysis, 81: 38-51.
Obermaier V, Scheipl F, Heumann C, Wassermann J,
Küchenhoff H (2015):
Flexible Distributed Lags for Modeling Earthquake Data.
Journal of the Royal Statistical Society, Series C,
64(2): 395-412.
Zipunnikov V, Greven S,
Shou H, Caffo B, Reich D. and Crainiceanu C (2014): Longitudinal
High-Dimensional
Principal Components Analysis with Application to
Diffusion Tensor Imaging of Multiple Sclerosis. Annals
of Applied Statistics, 8(4): 2175-2202. arXiv
McLean M, Hooker G, Staicu A-M, Scheipl F and
Ruppert D (2014): Functional Generalized Additive Models. Journal
of Computational and Graphical Statistics, 23(1):
249-269.
Saefken, B, Kneib, T, van Waveren, C-S and Greven S
(2014): A
Unifying Approach to the Estimation of the Conditional
Akaike Information in Generalized Linear Mixed Models.
Electronic Journal of Statistics, 8: 201-225.
Goldsmith J and Scheipl F (2013): Estimator
Selection and Combination in Scalar-on-Function
Regression. Computational Statistics and
Data Analysis, 70: 362-372.
Greven S and Crainiceanu C (2013): On
Likelihood
Ratio Testing for Penalized Splines. AStA Advances
in Statistical Analysis, 97(4): 387-402.
Scheipl F, Kneib T, Fahrmeir L (2013): Penalized
Likelihood
and Bayesian Function Selection in Regression Models.
AStA Advances in Statistical Analysis, 97(4):
349-385. arXiv
Wood SN, Scheipl F, Faraway JJ (2013): Straightforward
intermediate
rank tensor product smoothing in mixed models. Statistics
and Computing, 23(3):341-360.
Gertheiss J, Goldsmith J, Crainiceanu C and Greven
S (2013): Longitudinal
Scalar-on-Functions Regression with Application to
Tractography Data. Biostatistics, 14(3):
447-461. Preprint.
Goldsmith J, Greven S and Crainiceanu C (2013): Corrected
Confidence Bands for Functional Data Using Principal
Components. Biometrics, 69(1): 41-51. Preprint.
Baumert J, Karakas M, Greven S, Rückerl R, Peters
A, Koenig W (2012): Variability of
fibrinogen measurements in post-myocardial infarction
patients: Results from the AIRGENE study center Augsburg.
Thrombosis and Haemostasis, 107(5): 895-902.
Wiencierz A, Greven S and Küchenhoff H (2011): Restricted
Likelihood Ratio Testing in Linear Mixed Models with
General Error Covariance Structure. Electronic
Journal of Statistics, 5: 1718-1734.
Greven S, Dominici F and Zeger S (2011): An
Approach
to the Estimation of Chronic Air Pollution Effects Using
Spatio-Temporal Information. Journal of the
American Statistical Association, 106(494): 396–406.
Greven S, Crainiceanu C, Caffo B and Reich D
(2010): Longitudinal
Functional Principal Component Analysis. Electronic
Journal of Statistics, 4: 1022-1054. R function LFPCA
Greven S and Kneib T (2010): On
the Behaviour of Marginal and Conditional AIC in Linear
Mixed Models. Biometrika, 97(4): 773-789. R
package cAIC
Tutz G and Gertheiss J (2010): Feature
Extraction
in Signal Regression: A Boosting Technique for Functional
Data Regression. Journal of Computational and
Graphical Statistics, 19: 154-174.
Papers in Proceedings
Greven S (2015): A General Framework for
Functional Regression. Proceedings of the 30th
International Workshop on Statistical Modelling,
51-66. Eds.: Friedl H and Wagner H.
Brockhaus S, Fuest A, Mayr A and Greven S
(2015): Functional Regression Models for Location, Scale and
Shape Applied to Stock Returns. Proceedings of the 30th
International Workshop on Statistical Modelling,
117–122. Eds.: Friedl H and Wagner H.
Cederbaum J, Greven S, Pouplier M and Hoole
P (2014): Functional Linear Mixed Model for Irregularly
Spaced Phonetics Data. Proceedings of the 29th
International Workshop on Statistical Modelling,
75–80. Eds.: Kneib T, Sobotka F, Fahrenholz J and Irmer H.
Pouplier, Hoole, Cederbaum, Greven,
Pastätter (2014): Perceptual and articulatory factors in
German fricative assimilation. Proceedings of the 10th
International Seminar on Speech Production, Cologne,
Germany, 5-8 May 2014.
Brockhaus S, Scheipl F, Torsten H and Greven
S (2014): The Functional Linear Array Model and an
Application to Viscosity Curves. Proceedings of the
29th International Workshop on Statistical Modelling,
63–68. Eds.: Kneib T, Sobotka F, Fahrenholz J and Irmer H.
Scheipl F, Staicu A-M and Greven S (2014):
Functional Additive Mixed Models. Proceedings of the
29th International Workshop on Statistical Modelling,
325–330. Eds.: Kneib T, Sobotka F, Fahrenholz J and Irmer H.
Scheipl F, Staicu A-M and Greven S (2014):
Functional Additive Mixed Models. Contributions in
infinite-dimensional statistics and related topics,
257-262. Eds.: Bongiorno EG, Salinelli E, Goia A, Vieu P.
Societa Editrice Esculapio
Cederbaum J, Greven S (2013): Functional
Linear Mixed Models for Sparsely and Irregularly Sampled
Data. Proceedings of the 28th International Workshop on
Statistical Modelling, 75–80. Eds.: Muggeo VMR,
Capursi V, Boscaino G, Lovison G.
Greven S, Crainiceanu C, Caffo B and Reich D
(2011):
Longitudinal Functional Principal Component Analysis.
In: Recent Advances in Functional Data Analysis and
Related Topics, 149-154. Ed.: Ferraty F. Physica-Verlag.
Current Preprints / Technical Reports / Submitted
Köhler, M, Umlauf, N, Beyerlein, A, Winkler, C, Ziegler, AG and Greven S: Flexible Bayesian additive joint models with an application to type 1 diabetes research.
arXiv.
Cederbaum J, Scheipl F and Greven S: Fast symmetric additive covariance smoothing.
arXiv.
Rügamer D, Brockhaus S, Gentsch K, Scherer K and Greven S:
Boosting Factor-Specific Functional Historical Models for the Detection of Synchronisation in Bioelectrical Signals.
arXiv.
Brockhaus S, Fuest A, Mayr A, Greven S:
Signal Regression Models for Location, Scale and Shape
with an Application to Stock Returns. arXiv.
Pouplier M, Cederbaum J, Hoole P, Greven S:
Mixed modeling for functional data for research in the
speech sciences.
Bender A, Scheipl F and Kuechenhoff, H: Modeling
Exposure-Lag-Response Associations with Penalized
Piece-wise Exponential Models. Department of Statistics: Technical
Reports, Nr. 192.
McLean MW, Scheipl F, Hooker G, Greven S
and Ruppert D: Bayesian
Functional Generalized Additive Models with Sparsely
Observed Covariates. arXiv.
Software
sparseFLMM(): functional linear mixed models for
irregularly or sparsely sampled data using functional principal component analysis, see
R package sparseFLMM
pffr(): additive regression of
functional measurements with functional and/or scalar
covariates, included in R package refund
FDboost: regression models for
functional data, i.e., scalar-on-function, function-on-scalar
and function-on-function regression models, fitted by a
component-wise gradient boosting algorithm, see R package FDboost
funData: An S4 Class for Functional Data, provides S4 classes for univariate and multivariate functional data, covering densely or sparsely observed functional data as well as images. R package funData
MFPCA: Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional, e.g. functions and images.
R package MFPCA
cAIC4: Conditional Akaike
information criterion for lme4. R package cAIC4
We collaborate with the
S.M.A.R.T.
group (Statistical Methods and Applications for Research
in Technology) at Johns Hopkins Univerisity.
Impressum
Datenschutz Last Modification:
Sonja Greven,
23 May 2018, 14:15:52