Kapitel 3

Likelihood-Inferenz

3.1 Parametrische Likelihood-Inferenz

Situation: $\mathcal{P}_{\theta} = \{f(\boldsymbol{x}|\theta) : \theta \in \Theta\}, \ \Theta \subseteq \mathbb{R}^p, \ p \ll n, \ p \text{ konstant für } n \to \infty. \ f(\boldsymbol{x}|\theta) \text{ ist eine diskrete oder stetige oder allgemeiner eine Radon-Nikodym-Dichte.}$

Definition 3.1 (Likelihoodfunktion). Die Likelihoodfunktion von $\theta \in \Theta$,

$$L(\theta) = f(\boldsymbol{x}|\theta),$$

ist definiert als die Dichte der beobachteten Daten $\mathbf{X} = (X_1, \dots, X_n) = \mathbf{x} = (x_1, \dots, x_n)$, betrachtet als Funktion von θ . Mit $L(\theta)$ ist auch $\widetilde{L}(\theta) = \operatorname{const} \times L(\theta)$ eine Likelihoodfunktion.

Zu unterscheiden sind folgende Situationen:

1. X_1, \ldots, X_n sind i.i.d. wie $X_i \sim f_1(x|\theta)$ (Statistik IV). Es gilt die Faktorisierung

$$L(\theta) = \prod_{i=1}^{n} f_1(x_i|\theta).$$

2. X_1, \ldots, X_n — bzw. $Y_1|z_1, \ldots, Y_n|z_n$ im Regressionsfall bei einer Zielvariable \boldsymbol{Y} und Kovariablenvektor \boldsymbol{z} — sind unabhängig, aber nicht mehr identisch verteilt. Es gilt die Faktorisierung

$$L(\theta) = \prod_{i=1}^{n} f_i(x_i|\theta).$$

3. Die Paare $(X_1^d, X_1^s), \ldots, (X_i^d, X_i^s), \ldots, (X_n^d, X_n^s)$ sind unabhängig, die einzelnen Komponenten innerhalb eines Paares unter Umständen abhängig. Die Indizes s, d beziehen sich auf stetige bzw. diskrete Variablen. Eine derartige Datenlage ergibt sich beispielsweise bei Survivaldaten mit stetigen Überlebenszeiten und einem diskreten Zensierungsindikator $X_i^d = I(C_i \leq T_i)$, wobei C_i bzw. T_i den Zensierungs- bzw. Verweildauerprozess bezeichnen. Unter obige Situation fallen auch Mischverteilungsmodelle. X_i^d enspricht dann einer Klassenzugehörigkeit und X_i^s einem stetigen Merkmal(svektor).

4. Zeitlich korrelierte Daten / Stichprobenvariablen $X_1, \ldots, X_t, \ldots, X_n$ mit Dichtefunktion

$$f(x_1, ..., x_t, ..., x_n | \theta) = f(x_n | x_{n-1}, ..., x_t, ..., x_1; \theta) \cdot ... \cdot f(x_{n-1} | x_{n-2}, ..., x_1; \theta) \cdot ... \cdot f(x_2 | x_1; \theta) f(x_1 | \theta).$$

Bei Markov-Ketten erster Ordnung mit der Eigenschaft

$$f(x_n|x_{n-1},...,x_1;\theta) = f(x_n|x_{n-1};\theta)$$

vereinfacht sich die Likelihood zu

$$L(\theta) = \left(\prod_{i=2}^{n} f(x_i|x_{i-1};\theta)\right) f(x_1|\theta).$$

Beispiel 3.1 (zu diesen vier Situationen).

- 1. Siehe Statistik IV bzw. Grundstudium.
- 2. Regressionssituationen (Querschnittsdaten) mit unabhängigen Zielvariablen $Y_1|z_1, \ldots, Y_n|z_n$ und festen Kovariablen z_i :
 - klassisches lineares Modell: $Y_i|z_i \sim N(z_i^{\top}\beta, \sigma^2)$,
 - Logit- oder Probitmodell: $Y_i|\mathbf{z}_i \sim Bin(1, \pi_i = h(\mathbf{z}_i^{\top}\boldsymbol{\beta})),$
 - Poisson-Regression: $Y_i|\mathbf{z}_i \sim Po(\lambda_i = h(\mathbf{z}_i^{\top}\boldsymbol{\beta})).$
- 3. Markov-Ketten, autoregressive Modelle für Zeitreihen/Longitudinaldaten.
- 4. Autoregressiver Prozess 1. Ordnung: Sei

$$X_t = \alpha + \gamma X_{t-1} + \varepsilon_t$$

 $mit \ \varepsilon_t \overset{i.i.d.}{\sim} N(0,\sigma^2) \ oder - mit \ zus \"{a}tzlichem \ (zeitabh\"{a}ngigen) \ Kovariablenvektor \ \emph{\textbf{z}}_t - mit \ sus \H{a}tzlichem \ (zeitabh\H{a}ngigen)$

$$X_t = \alpha + \gamma X_{t-1} + \boldsymbol{z}_t^{\top} \boldsymbol{\beta} + \varepsilon_t.$$

In letzterem Fall hat die Likelihood die Form

$$L(\theta) = \left(\prod_{i=2}^{n} f_i(x_i|x_{i-1};\theta)\right) f_1(x_1)$$

mit

$$f_i(x_i|x_{i-1};\theta) = \phi(x_i|\alpha + \gamma x_{i-1} + \boldsymbol{z}_i^{\top}\boldsymbol{\beta}, \sigma^2),$$

wobei $\phi(x|\mu,\tau^2)$ den Wert der Normalverteilungsdichte mit Erwartungswert μ und Varianz τ^2 an der Stelle x bezeichnet.

Beispiel 3.2. Wir betrachten unabhängige, aber (teils) unvollständige Ziehungen aus $N(\theta, 1)$.

1. Ziehung: Es sei $x_1 = 2.45$. Dann ist

$$L_1(\theta) = \phi(x_1 - \theta) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(2.45 - \theta)^2\right).$$

2. Ziehung: Es sei nur $0.9 < x_2 < 4$ bekannt (unvollständige oder intervallzensierte Beobachtung). Die Likelihood lautet dann:

$$L_2(\theta) = \mathbb{P}_{\theta}(0.9 < X_2 < 4) = \Phi(4 - \theta) - \Phi(0.9 - \theta).$$

Formal könnte man auch eine binäre Variable

$$X_2^d = \begin{cases} 1, \ 0.9 < X_2 < 4, \\ 0, \ sonst \end{cases}$$

mit Dichtefunktion

$$f_2^d(1) = \mathbb{P}(X_2^d = 1) = \Phi(4 - \theta) - \Phi(0.9 - \theta)$$

definieren.

3. Ziehung: z_1, \ldots, z_n seien i.i.d. Realisierungen aus $N(\theta, 1)$. Bekannt sei aber nur

$$x_3 = \max_{1 \le i \le n} z_i = z_{(n)}.$$

Der Rest sind fehlende Werte ("missing values"). Die Verteilungsfunktion von $X_3 = Z_{(n)}$ ist

$$F_{\theta}(z_{(n)}) = \mathbb{P}_{\theta}(Z_{(n)} \leq z_{(n)}) = \mathbb{P}_{\theta}(Z_i \leq z_{(n)} \ \forall \ i)$$
$$= [\Phi(z_{(n)} - \theta)]^n.$$

Die Dichte ergibt sich über Differentiation bezüglich θ :

$$f_{\theta}(z_{(n)}) = n[\Phi(z_{(n)} - \theta)]^{n-1}\phi(z_{(n)} - \theta),$$

d.h. für zum Beispiel n = 5 und $z_{(n)} = x_3 = 3.5$ gilt

$$L_3(\theta) = 5[\Phi(3.5 - \theta)]^4 \phi(3.5 - \theta).$$

Die gesamte Likelihood der drei Beobachtungen ist

$$L(\theta) = L_1(\theta) \cdot L_2(\theta) \cdot L_3(\theta),$$

also das Produkt der Likelihoodfunktionen $L_1,\ L_2$ und $L_3.$

Fazit: Die Likelihood ist sehr allgemein definiert.

Beziehung zur Bayes-Inferenz

- $p(\theta)$ sei die Prioriverteilung,
- $f(x|\theta) = L(\theta)$ die Likelihood.
- Dann ist

$$p(\theta|x) \propto p(\theta) \cdot L(\theta)$$
 "Posteriori" \propto "Priori" × Likelihood.

Likelihood-Quotient

Frage: Wie vergleicht man die Likelihoods $L(\theta_1)$ und $L(\theta_2)$ für $\theta_1 \neq \theta_2$?

Antwort: Man betrachtet den Quotienten (nicht die Differenz), da dieser invariant gegenüber eineindeutigen Transformationen

$$x \mapsto y = y(x) \iff y \mapsto x(y)$$

ist. Für stetige x, y gilt mit dem Transformationssatz für Dichten:

$$f_Y(y|\theta) = f_X(x(y)|\theta) \left| \det \left(\frac{\partial x}{\partial y} \right) \right|$$

und somit

$$L(\theta; y) = L(\theta; x) \left| \det \left(\frac{\partial x}{\partial y} \right) \right| \Rightarrow \frac{L(\theta_2; y)}{L(\theta_1; y)} = \frac{L(\theta_2; x)}{L(\theta_1; x)}.$$

Satz 3.2.

1. Sei T = T(X) suffizient für θ . Dann gilt $L(\theta; x) = const \times L(\theta; t)$ mit t = T(x), d.h. $L(\theta; x)$ und $L(\theta; t)$ sind äquivalent.

2. $L(\theta; x)$ ist minimalsuffzient.

Beweis. Folgt unmittelbar aus den Resultaten aus Abschnitt 2.

3.2 Maximum-Likelihood-Schätzung

Die Maximum-Likelihood-Schätzung ist die populärste Methode zur Konstruktion von Punktschätzern bei rein parametrischen Problemstellungen.

3.2.1 Schätzkonzept

Maximum-Likelihood-Prinzip: Finde Maximum-Likelihood-Schätzwert $\widehat{\theta}$, so dass

$$L(\widehat{\theta}; x) \ge L(\theta; x)$$
 für alle $\theta \in \Theta$.

Dazu äquivalent ist

$$\ell(\widehat{\theta};x) \geq \ell(\theta;x), \ \ell(\theta) = \log L(\theta)$$

mit der Log-Likelihood ℓ . Meist sucht man nach (lokalen) Maxima von $\ell(\theta)$ durch Nullsetzen der Score-Funktion

$$s(\theta) = \frac{\partial \ell(\theta)}{\partial \theta} = \left(\frac{\partial \ell(\theta)}{\partial \theta_1}, \dots, \frac{\partial \ell(\theta)}{\partial \theta_p}\right)^{\top}$$

(soweit die 1. Ableitung der Log-Likelihood existiert!) als Lösung der sogenannten ML-Gleichung

$$s(\widehat{\theta}) = 0.$$