Aufgabe 5 (Entscheidungstheorie: Schätzen)

Sei $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ eine i.i.d. Stichprobe einer binomialverteilten Zufallsvariablen $X|\pi \sim \text{Bin}(1,\pi)$ und a priori $\pi \sim \mathcal{B}e(a,b)$ betaverteilt mit a,b>0. Als Punktschätzer für π kann beispielsweise der Posteriori-Erwartungswert von $\pi|\mathbf{x}$ verwendet werden:

$$T(\boldsymbol{x}, a, b) = \frac{n\bar{x} + a}{n + a + b}.$$

(a) Zeigen Sie, dass bei quadratischer Verlustfunktion die Risikofunktion von T(X, a, b)

$$R(T,\pi) = \frac{n\pi(1-\pi) + (a - (a+b)\pi)^2}{(a+b+n)^2}$$

lautet.

- (b) Welche besondere Eigenschaft besitzt die Risikofunktion aus Teil (a) für $a=b=\sqrt{n}/2$?
- (c) Geben Sie die Risikofunktion des ML-Schätzers $T_c(\boldsymbol{X}) = \bar{X}$ bei quadratischer Verlustfunktion an.
- (d) Skizzieren Sie für n=16 die Risikofunktion aus (a) für a=b=1 sowie die Risikofunktionen aus (b) und (c). Welcher der drei Schätzer ist unter diesen der Minimax-Schätzer?

Datum: Freitag, 31.10.2014 Seite 1 von 2

Aufgabe 6 (Entscheidungstheorie: Testen)

Sei

$$\varphi(x) = \begin{cases} 1 & \text{für } x \in K; \text{ Entscheidung } d_1 \\ 0 & \text{für } x \notin K; \text{ Entscheidung } d_0 \end{cases}$$

ein (nicht-randomisierter) Test für die Hypothesen

$$H_0: \theta \in \Theta_0$$
 vs. $H_1: \theta \in \Theta_1$

über einen Parameter θ , wobei $\Theta_0 \cap \Theta_1 = \emptyset$. Jede Verlustfunktion L besitzt also die beiden möglichen Werte $L(d_0; \theta)$ und $L(d_1; \theta)$.

- (a) Geben Sie die zugehörige Risikofunktion $R(\varphi; \theta)$ an und drücken Sie diese durch die Gütefunktion des Tests aus.
- (b) Sei

$$L(d_0; \theta) = \begin{cases} v_{00} & \text{für } \theta \in \Theta_0 \\ v_{10} & \text{für } \theta \in \Theta_1 \end{cases}$$

$$L(d_1; \theta) = \begin{cases} v_{01} & \text{für } \theta \in \Theta_0 \\ v_{11} & \text{für } \theta \in \Theta_1 \end{cases}$$

wobei $v_{10}, v_{01} > \max(v_{00}, v_{11})$ gelten soll. Geben Sie die zugehörige Risikofunktion in Abhängigkeit von der Gütefunktion an.

(c) Spezialisieren Sie (b) für den Fall $v_{00} = v_{11} = 0, v_{10} = v_{01} = 1$ und diskutieren Sie, wie man einen Test zum Niveau α zu konstruieren hat, der minimales Risiko für $\theta \in \Theta_1$ besitzt.

Datum: Freitag, 31.10.2014 Seite 2 von 2