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The marginal model

Estimation is usually based on the marginal model. The longitudinal
linear mixed model (3.5)

Yi = Xiβ + Zibi + εi

bi ∼ N (0q,D)
εi ∼ N (0ni

,Σi)
b1, . . . ,bN , ε1, . . . , εN independent

implies the marginal model (3.8)

Yi ∼ N (Xiβ,ZiDZT
i + Σi), for i = 1, . . . , N.
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Remember that (3.5) and (3.8) are not equivalent. For example, in
the random intercept model with independent errors (see slides 34-35 in
Chapter 3),

• d2 is a variance in D for (3.5) and should be non-negative

• in the marginal model (3.8), Cov(Yij, Yik) = d2 + σ2I(j = k). Thus, d2

is a covariance and can be negative as long as V i = ZiDZT
i + Σi is

positive definite.

This has implications for the parameter space. More later.
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The covariance parameters

Let α be the vector of variance and covariance parameters defining

Vi = ZiDZT
i + Σi,

i.e.

• the different elements in D (q(q+1)/2 if there are no further assumptions)

• all parameters in Σi, e.g.

– σ2 if Σi = σ2Ini

– φ and τ2 if Σi = τ2Hi with hijk = exp(−φ|tij − tik|).

We then write Vi(α) to stress the dependence on α and
V(α) = diag(V1(α), . . . ,VN(α)) for the covariance matrix of Y .
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Notation

We denote the vector of length s containing all parameters in the marginal
model as θ:

θ =
(
β
α

)
.

Let Θ = Θβ ×Θα be the parameter space for θ with

• Θβ = Rp: parameter space for β

• Θα: The set of α values resulting in positive (semi-)definite matrices
D and Σi (i = 1, . . . , N) for the linear mixed model (3.5) or, for the
marginal model (3.8), those resulting in positive-definite matrices Vi.
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Example: The TLC trial
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Example: The TLC trial

For the TLC trial, consider the following model

Yij = β0 + β1gi + β2I(tj = 1) + β3I(tj = 4) + β4I(tj = 6)

β5giI(tj = 1) + β6giI(tj = 4) + β7giI(tj = 6) + bi + εij

where

• Yij is the lead blood level for child i in week tj

• tj ∈ {0, 1, 4, 6} indicates the week

• gi = 1 if child i is in the succimer group and = 0 if in the placebo group

Interpretation?
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Example: The TLC trial

Then, β = (β0, β1, β2, β3, β4, β5, β6, β7) and if we assume

bi
i.i.d.∼ N (0, d2) independent of εij

i.i.d.∼ N (0, σ2)

we have α = (d2, σ2) with d2 ≥ 0, σ2 > 0 in the hierarchical model or
d2 + σ2 d2 . . . d2

d2 d2 + σ2 . . . d2

... ... . . . ...
d2 d2 . . . d2 + σ2


positive definite in the marginal model.
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Estimation of the fixed effects

For the marginal model Yi ∼ N (Xiβ,Vi(α)), the marginal likelihood
and log-likelihood are given by

LML(θ) =
N∏

i=1

{
(2π)−ni/2|Vi(α)|−1

2

× exp
(
−1

2
(yi −Xiβ)TVi(α)−1(yi −Xiβ)

)}

`ML(θ) = −n
2

log(2π)− 1
2

N∑
i=1

log |Vi(α)|

−1
2

{
N∑

i=1

(yi −Xiβ)TVi(α)−1(yi −Xiβ)

}
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or

`ML(θ) = −n
2

log(2π)− 1
2

log |V(α)| − 1
2

(y −Xβ)TV(α)−1(y −Xβ).

Now consider first estimation of the fixed effects. Taking the derivative with
respect to (w.r.t.) β yields

∂

∂β
`ML(θ) = XTV (α)−1(y −Xβ) != 0

⇒ β̂ML(α) =
(
XTV (α)−1X

)−1

XTV (α)−1y

=

{
N∑

i=1

(
XT

i Vi(α)−1Xi

)}−1 N∑
i=1

(
XT

i Vi(α)−1yi

)
.
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Estimation of the fixed effects

• Thus, for known α, the maximum likelihood (ML) estimator for β
corresponds to the generalized least squares (GLS) estimator. It minimizes
the weighted least squares criterion

(y −Xβ)TW(y −Xβ)

with W = V(α)−1.

• We here assumed that the inverses Vi(α)−1 and
{∑N

i=1

(
XT

i Vi(α)−1Xi

)}−1

exist. Generalizations exist using generalized inverses.

• β̂ML(α) is the best linear unbiased estimator (BLUE).

• β̂ML(α) still depends on α, which needs to be estimated.
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ML estimation of α

Substituting β̂ML(α) into the log-likelihood `ML(θ) = `ML(β,α) gives

the profile log-likelihood `ML(β̂ML(α),α), which depends only on α.

This can be maximized (numerically) to obtain the ML estima-
te α̂ML for α. The maximum likelihood estimate for θ then is
θ̂ML = (β̂ML(α̂ML), α̂ML).

ML estimators are known to be biased downwards for variances
→ restricted or residual maximum likelihood (REML) estimation.
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REML estimation - Motivation

• We want to estimate the variance of a normal distribution from
Y1, . . . , YN i.i.d. N (µ, σ2) variables.

• For known mean µ the ML estimator is

σ̂2
ML =

1
N

N∑
i=1

(Yi − µ)2.

• If for unknown mean µ is replaced by µ̂ = Y = 1
N

∑N
i=1 Yi in this

formula, the resulting ML estimator σ̂2 is biased downwards:

E(σ̂2
ML) =

N − 1
N

σ2.
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REML estimation: Error contrasts

• For this reason the unbiased estimator σ̂2 = 1
N−1

∑N
i=1(Yi−µ̂)2 is usually

used. We will see that this corresponds to the REML estimator.

• As the Yi are i.i.d. N (µ, σ2), the vector Y = (Y1, . . . , YN)T has a
multivariate normal distribution

Y ∼ N (µ1N , σ
2IN),

where 1N is a vector of ones of length N .

• Idea: We want to estimate σ2 “directly”, without estimating µ first.

• How can we do this? By using a transformation of Y1, . . . , YN that
“eliminates” µ.
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REML estimation: Error contrasts

• A linear transformation U = ATY

is called an error contrast if A is an N × (N − 1) matrix with linearly
independent columns that are orthogonal to 1N .

• The random vector U has a normal distribution with mean

E(U) = AT E(Y ) = AT (µ1N) = µAT1N = 0N−1

by construction and with variance Var(U) = σ2ATA. This distribution
does not involve µ and the likelihood based on U can thus be directly
maximized to obtain an estimate for σ2.
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REML estimation: Error contrasts

• U = Y − 1N(
1
N

1T
NY) = (IN −

1
N

1N1T
N)Y =: ATY

corresponding to the centered variables Y1 − µ̂, . . . , YN − µ̂ fulfills the
requirements in our N (µ, σ2) example besides being of size N ×N .

• Only N − 1 columns of A can be linearly independent due to the loss in
degrees of freedom from estimating µ̂. Deleting any column of A then
defines N − 1 linearly independent error contrasts.

• One can show that maximizing the likelihood based on U ∼
N (0N , σ

2ATA) yields σ̂2
REML = N

N−1σ̂
2
ML = 1

N−1

∑N
i=1(Yi − µ̂)2 and

that this unbiased estimator is independent of the particular error contrast
chosen.
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REML estimation for the linear regression model

• In the linear regression model Y = Xβ+ ε with ε ∼ N (0, σ2In) the ML
estimator for σ2 is given by

σ̂2
ML =

1
N

(Y −X(XTX)−1XTY)T (Y −X(XTX)−1XTY).

• This estimator is biased downwards as the p regression coefficients
β1, . . . , βp are unknown and replaced by estimates.

• Defining error contrast U = ATY, where the N × (N − p) matrix A
has N − p linearly independent columns that are orthogonal to X, and
maximizing the likelihood based on U yields the commonly used and
unbiased REML estimator σ̂2

REML = N
N−pσ̂

2
ML for σ2.
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REML estimation for the linear mixed model

In linear mixed models the likelihood based on error contrasts (with columns
in A again orthogonal to X) can be written as

LREML(α) = (2π)−(n−p)/2

∣∣∣∣∣
N∑

i=1

XT
i Xi

∣∣∣∣∣
1/2

×

∣∣∣∣∣
N∑

i=1

XT
i Vi(α)−1Xi

∣∣∣∣∣
−1/2 N∏

i=1

|Vi(α)|−1/2

× exp

{
−1

2

N∑
i=1

(yi −Xiβ̂(α))TVi(α)−1(yi −Xiβ̂(α))

}
.

This result is independent of the particular choice of the error contrasts.
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REML estimation for the linear mixed model

• Thus,

LREML(α) = const

∣∣∣∣∣
N∑

i=1

XT
i Vi(α)−1Xi

∣∣∣∣∣
−1/2

LML(β̂(α),α),

with LML(β̂(α),α) the profile likelihood and const a constant not
depending on α.

• REML can be used to estimate α by α̂REML, but not β. (The whole
point of REML is that LREML(α) does not depend on β!)
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REML estimation for the linear mixed model

• REML is mainly used to reduce the downwards bias when estimating α
compared to ML estimation. It is however not guaranteed that the mean
squared error (MSE) is also reduced.

• As the estimator for the fixed effects β depends on α, the two estimators
β̂(α̂REML) and β̂(α̂ML) are in general not identical.

• LREML(α) is the likelihood of the error contrasts U = ATY, where A
is chosen to be orthogonal to X. Thus, for two models with different
design matrices X, the resulting error contrasts U are different and the
REML likelihoods LREML(α) are not comparable (“comparing apples
and oranges”). This will be important for inference, see Chapter 5.

Analysis of Longitudinal Data, Summer Term 2016 22



Estimation of β and α in the linear mixed model:
Summary

• For a given value α, β̂ is given by the ML (or GLS) estimate

β̂(α) =

{
N∑

i=1

XT
i Vi(α)−1Xi

}−1 N∑
i=1

(
XT

i Vi(α)−1yi

)
.

• α is estimated by maximizing the profile likelihood LML(β̂(α),α) (ML)
or restricted likelihood LREML(α) (REML).

• The estimates for β are obtained by plugging in the estimates for α.
This yields the so-called empirical BLUEs β̂(α̂REML) or β̂(α̂ML).
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Example: The TLC trial

For the TLC trial, we can fit the linear mixed model from 4.1

Yij = β0 + β1gi + β2I(tj = 1) + β3I(tj = 4) + β4I(tj = 6)

β5giI(tj = 1) + β6giI(tj = 4) + β7giI(tj = 6) + bi + εij

using

lmeREML <- lme(lead ~ group * week, random = ~ 1 | id,
data = lead) # REML is the default

lmeML <- lme(lead ~ group * week, random = ~ 1 | id,
data = lead, method = "ML")

where group and week are factors for the treatment groups and weeks,
respectively.
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Example: The TLC trial - REML results
Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 5.112717 4.214287

Fixed effects: lead ~ group * week
Value Std.Error DF t-value p-value

(Intercept) 26.272 0.9370175 294 28.037898 0.0000
groupS 0.268 1.3251428 98 0.202242 0.8401
week1 -1.612 0.8428574 294 -1.912542 0.0568
week4 -2.202 0.8428574 294 -2.612542 0.0094
week6 -2.626 0.8428574 294 -3.115592 0.0020
groupS:week1 -11.406 1.1919804 294 -9.568950 0.0000
groupS:week4 -8.824 1.1919804 294 -7.402807 0.0000
groupS:week6 -3.152 1.1919804 294 -2.644339 0.0086
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Example: The TLC trial - ML results
Random effects:
Formula: ~1 | id

(Intercept) Residual
StdDev: 5.061331 4.171931

Fixed effects: lead ~ group * week
Value Std.Error DF t-value p-value

(Intercept) 26.272 0.9370175 294 28.037898 0.0000
groupS 0.268 1.3251428 98 0.202242 0.8401
week1 -1.612 0.8428574 294 -1.912542 0.0568
week4 -2.202 0.8428574 294 -2.612542 0.0094
week6 -2.626 0.8428574 294 -3.115592 0.0020
groupS:week1 -11.406 1.1919804 294 -9.568950 0.0000
groupS:week4 -8.824 1.1919804 294 -7.402807 0.0000
groupS:week6 -3.152 1.1919804 294 -2.644339 0.0086
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Numerical calculation of the estimates

How are the estimates for α and β numerically computed?

• The historically first approach was the expectation maximization (EM,
Dempster, Laird und Rubin (1977)) algorithm, treating the random
effects as missing data. This can be slow to converge near the optimum.

• The Newton-Raphson algorithm can be used to directly optimize
LML(β̂(α),α) or LREML(α), but is most stable near the optimum
and computationally more expensive (computation of derivatives).

• lme uses a hybrid of first EM and then Newton-Raphson.

lmer offers several options for constrained nonlinear optimizers of the
(RE)ML criterion that do not use derivatives.
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Numerical calculation of the estimates

The Newton-Raphson algorithm cannot take into account restrictions
on the parameters such as we discussed on Slide 5 for Θα to guarantee
positive (semi)-definite covariance matrices.

Whether negative estimates for variances in D can occur depends on
the restrictions and parameterizations the software package uses for α.

Users should be aware of the different approaches that software packages
take to these restrictions (and of the version of restrictions used).
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Numerical calculation of the estimates in R

• To avoid negative variance estimates, lme maximizes the (restricted) log-
likelihood with respect to the log-variances. This means that a maximum
in zero (the corresponding random effect vanishes) cannot be found.

• lmer assumes a diagonal Σi. It uses a Cholesky decomposition for D
with constraints on the diagonal elements. This ensures a positive semi-
definite D but allows for singular D corresponding to zero variances. For
more details, see Bates et al, 2014.
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Numerical issues

Consider for example the model

Yij = xT
ijβ + bi1 + bi2tij + bi3t

2
ij + εij,

with subject-specific quadratic trends. Note that t2ij can become very large
depending on the time scale for tij (e.g. months in a decade-long study).

It can be helpful in such cases to rescale time e.g. from months to decades.

Otherwise, the variance of bi3 will be very small and close to the
boundary 0 and this can lead to numerical problems during maximization.

Var(bi3t2ij) = d33t
2
ij ⇒ Var(bi31202

(
tij
120

)2

) = (14400 d33)
(
tij
120

)2

.
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Prediction of the random effects

• Often one is mainly interested in the population effects β.

• It can however also be of interest to look at ’estimates’ of the random
effects bi, e.g. to obtain individual prognoses or to detect unusual or
extreme subjects.

• As the bi are random variables, they cannot be estimated, strictly
speaking. We thus usually talk of prediction of the random effects.

• To obtain predictions for bi, we need the hierarchical model formulation
(3.5), as the random effects do not occur in the marginal model (3.8)
(which was used to estimate β and α).
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Prediction of the random effects

Remember the longitudinal linear mixed model (3.5)
Yi = Xiβ + Zibi + εi

bi ∼ N (0,D)
εi ∼ N (0,Σi)
b1, . . . ,bN , ε1, . . . , εN are independent

• Marginal distribution of bi:
bi ∼ Nq(0q,D)

• Conditional distribution of Yi:
Yi|bi ∼ Nni

(Xiβ + Zibi,Σi)
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A Bayesian approach for prediction

Bayes theorem:

f(bi|Yi = yi) =
f(yi|bi)f(bi)∫
f(yi|bi)f(bi)dbi

.

Usually, bi is predicted as the mean of the posterior distribution

b̂i(θ) = E[bi|Yi = yi]

= D(α)ZT
i Vi(α)−1(yi −Xiβ).

This results from rules for the conditional expectation for normally distribu-
ted vectors with two blocks and(

Yi

bi

)
∼ N

((
Xiβ

0

)
,

(
Vi ZiD

DZT
i D

))
.
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Prediction of the random effects

• In practice, α and β are replace by their ML or REML estimates
→ “Empirical Bayes” estimation.

• b̂i(θ) also corresponds to the best linear unbiased predictor (BLUP)
of bi. Unbiased here means

E(b̂i(θ)) = E(bi) = 0

and not E(b̂i(θ)|bi) = bi for all bi. Best means that the BLUP minimizes

E[(b̂i − bi)T (b̂i − bi)] among all linear unbiased predictors b̂i.

If θ̂ is estimated, b̂i(θ̂) is called the empirical BLUP (eBLUP).
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Shrinkage: Example random intercept model

Consider the model with only a random intercept:

Yi = Xiβ + Zibi + εi,

with

Zi =

 1
...
1

 , bi ∼ N (0, d2).

We additionally assume εi ∼ Nni
(0ni

, σ2Ini
).
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Shrinkage: Example random intercept model

Empirical Bayes estimate / BLUP for b̂i:

b̂i = D(α)ZT
i Vi(α)−1(yi −Xiβ)

= d21T
ni

(
d21ni×ni

+ σ2Ini

)−1
(yi −Xiβ)

=
d2

σ2
1T

ni

(
Ini
− d2

nid2 + σ2
1ni×ni

)
(yi −Xiβ)

=
d2

σ2
(1− ni

d2

nid2 + σ2
)1T

ni
(yi −Xiβ)

=
nid

2

σ2 + nid2

1
ni

ni∑
j=1

(yij − xT
ijβ).

Interpretation?
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Shrinkage: Example TLC trial
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Shrinkage effekt

Prediction of Yi:

Ŷi = Xiβ̂ + Zib̂i

= Xiβ̂ + ZiD(α̂)ZT
i Vi(α̂)−1(yi −Xiβ̂)

= (Ini
− ZiD(α̂)ZT

i Vi(α̂)−1)Xiβ̂ + ZiD(α̂)ZT
i Vi(α̂)−1yi

= Σi(α̂)Vi(α̂)−1Xiβ̂ + (Ini
−Σi(α̂)Vi(α̂)−1)yi

This is a weighted average between the population mean Xiβ̂ and the
observations yi.

This is called shrinkage (towards the population-averaged profile Xiβ̂) and
reflects the “borrowing of strength” in LMMs. Predictions (also for bi) have
less spread than if treating bi as fixed effects.
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Henderson’s mixed model equations

BLUE β̂ and BLUP b̂ = (b̂
T

1 , . . . , b̂
T

N)T are the solution to the simulta-
neous Henderson’s mixed model equations (Henderson, 1950)

XTR−1Xβ̂ +XTR−1Zb̂ = XTR−1y (4.1)

ZTR−1Xβ̂ + (ZTR−1Z +G−1)b̂ = ZTR−1y

There are different justifications for these equations (Robinson, 1991)
including that the estimates are empirical Bayes estimates (with uniform
improper prior for β).
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Henderson’s mixed model equations

Equations (4.1) also arise when maximizing the log-likelihood based on
the joint density of Y and b over β and b (“penalized log-likelihood”):

`pen(β, b,α) = const−1
2

(y−Xβ−Zb)TR−1(y−Xβ−Zb)−1
2
bTG−1b.

(4.2)

• For G → 0 this yields b̂ = 0.

• For G−1 → 0 we have bTG−1b→ 0 and the estimate of b converges to
the estimate treating b as fixed effects.
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Henderson’s mixed model equations

Solving (4.1) jointly for (β̂, b̂) yields a compact way to express the
solutions (equivalent to the separate formulas for BLUE and BLUP) as(

β̂

b̂

)
= (CTR−1C + diag(0p×p,G

−1))−1CTR−1y (4.3)

with C = (X|Z) and blockdiagonal matrix diag(0p×p,G
−1).

In this form the close relationship to ridge estimation becomes apparent.
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