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The two stage analysis: Example Orthodont/growth data

Stage 1: Separate linear models for each i. Here: assume the growth of
each child is approximately linear with child-specific intercepts and slopes.

Yij = βi1 + βi2tij + εij

With Y i = (Yi1, . . . , Yini)
T , βi = (βi1, βi2)T and Zi the ni × 2 matrix of

the form (
1 1 . . . 1 . . . 1
ti1 ti2 . . . tij . . . tini

)T
we can write this as

Yi = Ziβi + εi.
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Stage 2: Multivariate regression model for the coefficients βi = (βi1, βi2)T ,

βi1 = β1 + β2Gi + bi1, βi2 = β3 + β4Gi + bi2.

βi1 and βi2 are subject-specific intercepts and slopes depending on gender
Gi. With β = (β1, β2, β3, β4)T , bi = (bi1, bi2)T , Ki of the form

Ki =
(

1 Gi 0 0
0 0 1 Gi

)
we can write this as

βi = Kiβ + bi.
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Combining stages 1 and 2

βi1 = β1 + β2Gi + bi1

βi2 = β3 + β4Gi + bi2

and
Yij = βi1 + βi2tij + εij

gives the model:

Yij = β1 + β2Gi + β3tij + β4Gitij + bi1 + bi2tij + εij.
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The two stage analysis in general: Stage 1

Stage 1: Separate linear model for each i = 1, . . . , N :

Yi = Ziβi + εi. (3.1)

• Zi: an ni×q matrix of potentially time-varying covariates (often including
time or some transformations of it)

• βi = (βi1, . . . , βiq)T : a vector of subject-specific regression coefficients

• εi = (εi1, . . . , εini)
T : a vector of residuals. For simplicity we will assume

an independent covariance structure Cov(εi) = σ2Ini for now, where Ini
is the ni × ni identity matrix.
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The two stage analysis in general: Stage 2

Stage 2: Multivariate regression model for the subject-specific regression
coefficients βi:

βi = Kiβ + bi, for i = 1, . . . , N. (3.2)

• Ki: a q × p matrix of known time-constant covariates

• β = (β1, . . . , βp)T : a vector of unknown regression coefficients

• bi = (bi1, . . . , biq)T : a vector of residuals.
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Combining stages 1 and 2

Substitution of
βi = Kiβ + bi (equation 3.2)

into
Yi = Ziβi + εi (equation 3.1)

gives

Yi = Xi︸︷︷︸β + Zibi + εi.

= ZiKi
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Another example: The rat data

Stage 1: Yij = βi1 + βi2tij + εij and Zi as in the growth data.

Stage 2: βi1 = β1 + bi1, βi2 = β2Li + β3Hi + β4Ci + bi2.

βi = Kiβ + bi, for i = 1, . . . , N,

with β = (β1, β2, β3, β4)T , bi = (bi1, bi2)T and the 2 × 4 matrix Ki is of
the form

Ki =
(

1 0 0 0
0 Li Hi Ci

)
.

• The intercept βi1 does not depend on the treatment. Why?

• For βi2 there is no intercept. Why?

Analysis of Longitudinal Data, Summer Term 2016 8



Two stage analysis: Naive approach

1. Estimate βi for each i separately in the model

Yi = Ziβi + εi. (3.3)

2. Estimate β in
βi = Kiβ + bi, (3.4)

where the βi are replaced by their estimates β̂i from (3.3).
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Disadvantages of the naive approach

1. Often there are not enough observations for each subject to estimate βi.

2. Summarizing Yi in β̂i loses information.

3. Replacing βi by β̂i causes additional variation (that is not accounted for
subsequently and that is potentially heterogeneous across i).

Conclusion: It is better to combine both stages in one model. This yields
a special case of the longitudinal linear mixed model (with Xi = ZiKi).
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The longitudinal linear mixed model

The longitudinal linear mixed model (LLMM) takes the following form:
Yi = Xiβ + Zibi + εi,
bi ∼ Nq(0q,D), i = 1, . . . , N,
εi ∼ Nni(0ni,Σi),
b1, . . . ,bN , ε1, . . . , εN are independent,

(3.5)

where Xi and Zi are ni × p and ni × q matrices of known covariates,
respectively, and bi and εi are vectors of lengths q and ni, respectively.

Note that while b1, . . . ,bN are assumed independent between subjects,
bi1, . . . , biq are typically not independent (general covariance D).

β and bi are called fixed and random effects.
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The longitudinal linear mixed model

Yi = Xiβ + Zibi + εi

• The vector of responses follows a linear model, with some regression
coefficients subject-specific and the rest population-averaged.

• Xi can include time-constant variables and time-varying effects such as
time or interactions between time and covariates (as in the growth data).

• Xi should include the variables in Zi due to E(bi) = 0. Xi = Zi is a
special case.

• The linear mixed model (3.5) is not particular to longitudinal data. It is
used for clustered data without longitudinal structure such as patients in
hospitals, mice in litters, experiments made in batches (batch effect) etc.
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The role of the random effects

• In contrast to the two stage approach, the estimation of the subject-
specific effects bi is stabilized by the distributional assumption
bi ∼ Nq(0,D) (“regularization”, “shrinkage effect”).

• The random effects can be seen as surrogates for the effect of un-
known or insufficiently measured subject-specific covariates which cause
heterogeneity between subjects.

• While the random effects account for resulting variation and correlation
in the data, they do not safeguard against confounding by those unknown
or insufficiently measured subject-specific covariates, see 3.6.
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Longitudinal and general linear mixed model

Model per subject Yi = Xiβ + Zibi + εi
bi ∼ N (0q,D), εi ∼ N (0ni,Σi)
b1, . . . ,bN , ε1, . . . , εN independent

Overall model: Y = Xβ + Zb + ε with[
b
ε

]
∼ N

([
0Nq
0n

]
,

[
G 0Nq×n
0n×Nq R

])
.

with block-diagonal matrices

G = diag(D, . . . ,D), R = diag(Σ1, . . . ,ΣN), Z = diag(Z1, . . . ,ZN).

Here, Y i, Xi, bi and εi for all i are stacked to obtain Y , X, b and ε.
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The general linear mixed model (LMM)

The longitudinal linear mixed model thus is a special case of the general
linear mixed model

Y = Xβ +Zb+ ε,
(
b
ε

)
∼ N

((
0
0

)
,

(
G 0r×n

0n×r R

))
(3.6)

• X and Z known design matrices (n× p and n× r)

• β vector of p unknown fixed parameters

• b vector of r random effects

• ε vector of n random errors.
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The general linear mixed model (LMM)

• The longitudinal LMM assumes that Y can be divided into independent
subvectors Y i for the ith subject (our focus here).

• The LMM (3.6) is more general - it allows for example for inclusion of

– additional random effects for clusters (e.g. growth curves for children
clustered in families), or generally nested or crossed structures of
random effects.

– smooth functions modeled using penalized splines, see Ch. 6.2.
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Marginal vs. conditional view

Yi = Xiβ + Zibi + εi, bi ∼ Nq(0q,D), εi ∼ Nni(0ni,Σi)

Conditional mean Marginal mean

E(Yi|bi) = Xiβ + Zibi E(Yi) = Xiβ

Conditional variance Marginal variance

Cov(Yi|bi) = Σi Cov(Yi) = V i := ZiDZTi + Σi

Proof during the lecture.

Analysis of Longitudinal Data, Summer Term 2016 19



Marginal vs. conditional view

The linear mixed model can thus be interpreted in two ways.

Conditional view on the linear mixed model:

Yi|bi ∼ Nni(Xiβ + Zibi,Σi). (3.7)

Interpretation: The random effects are subject-specific mean effects,
which vary in the population and are estimated under a normality assumption
(regularization).

In this hierarchical formulation of the LMM the mean of Y i is modelled
as a function of population and subject-specific effects.
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Marginal vs. conditional view

Marginal view on the linear mixed model:

Yi ∼ Nni(Xiβ,ZiDZTi + Σi). (3.8)

Interpretation: The random effects induce a correlation structure and
thus allow a statistical analysis of correlated data under a particular parsi-
moneous assumption on the correlation structure.

In the marginal formulation of the LMM the marginal population-
averaged mean of Yi is modeled as a function of population effects only.
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Marginal vs. conditional view

• While the longitudinal LMM (3.5) implies the marginal model (3.8),
the reverse is not true. The marginal distribution of Y i does not imply
distributions for bi and for Y i given bi.

• The marginal model in itself does not assume random effects.

• Not every covariance V i allows a hierarchical interpretation
V i = ZiDZTi + Σi.

• The fixed effects β have the same interpretation in the hierarchical and
marginal formulations of the LMM (not true in the generalized case).

• Estimation is based on the implied marginal model (3.8), see Ch. 4.
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The marginal covariance structure

• The implied marginal covariance, Cov(Yi) = ZiDZTi + Σi in (3.8),
decomposes the variability in the data into two sources:

– deviations of subjects from the population average (ZiDZTi ),
– deviations of observations from their subjects’ mean (Σi).

• D, Zi and Σi together specify the marginal covariance structure.
Different assumptions on D and Σi give models of varying complexity.

• D = Cov(bi) is symmetric and positive semidefinite as a covariance.
Usually additional structure such as diagonality cannot be assumed.
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The conditional covariance structure

• The conditional independence model assumes observations of one
subject are independent given bi, i.e. Σi = σ2Ini in (3.7). (E.g. far apart
measurements where ’close’ measurements are not more similar.)

• Sometimes this is not enough and
serial auto-correlation should be
assumed, see Ch. 6.1 for more.
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Specification of the fixed effects

• Only time: rare in the medical area where most often the effects of
covariates are of interest.

• Time and covariates without interaction: the covariates (age, gender,
treatment etc.) have a time-invariant effect on the response. Conversely,
the response’s change over time does not depend on the covariates.

• Time and covariates with interaction: relevant in practice.

Important: Understanding the data and the questions of interest, talking
to the subject-matter collaborators.
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Example orthodont data

8 9 10 11 12 13 14

15
20

25
30

Age

D
is

ta
nc

e

Boys
Girls

• Linear model plausible, but height
differences between girls and boys.
Growth at same speed??

• Model with interaction:

E(Yij) = β0+β1tij+β2Gi+β3Gitij,

Xi contains rows [1 Gi tij Gitij].
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Specification of the fixed effects: Time

• Polynomial trend of order p for time: E(Yij) = β0 +β1tij + · · ·+βpt
p
ij.

Then, the jth row of Xi is [1 tij . . . tpij].

When tp is in the model, 1, t, . . . , tp−1 should almost always be as well
(even when not significant).

• Other functions of t are also used such as
√
t, ln(t+ 1) (why not ln(t)?)

etc., often e.g. biologically motivated.

• It often makes sense to transform the time variable such that t = 0 can
be meaningfully interpreted. Examples: CD4 data, rat data.
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Time trends with breakpoints

Splines allow the extension of polynomial trends to those with break-
points. For the linear case:

E(Yij) = β0 + β1tij + β2(tij − τ1)+,

where (x)+ = max(x, 0) and τ1 is a fixed known knot. [1 tij (tij − τ1)+]
then is the jth row of Xi.

E(Yij) =
{

β0 + β1tij for tij ≤ τ1,
β0 + (β1 + β2)tij − β2τ1 for tij > τ1,

β1 : slope before τ1
β1 + β2 : slope after τ1.

This can be extended to more knots and flexible smooth trends, see Ch. 6.2.
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Time as a factor

For balanced data with few (p) time points per subject it can be useful to
consider time as a factor to avoid restrictive assumptions on the trend:

E(Yij) = β1I(tij = t1) + β2I(tij = t2) + · · ·+ βpI(tij = tp)

where I is the indicator function, I(tij = tk) =
{

1 if tij = tk
0 else.

.

Xi then has the form Xi = Ini.

For more time points or unbalanced data, a smooth trend is often the better
option if simple parametric assumptions are not reasonable (see Ch. 6.2).
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Special case: Random intercept

A very common special case is the random intercept model

Yij = xTijβ + bi + εij,

where xij is the covariate vector for the jth measurement of the ith subject
(jth row of Xi).

Subject-level model:
Yi = Xiβ + Zibi + εi,

where Zi = (1, . . . , 1)T .
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Special case: Random intercept - Example growth data

Model with time, gender, interaction time by gender and a random intercept:

Yij = β0 + β1tij + β2Gi + β3Gitij + bi + εij

with
bi ∼ N (0, d2).

As b1, . . . , bN are independent, the random vector b = (b1, . . . , bN)T has
the distribution

b ∼ NN(0, d2IN).

• How is the model to be interpreted?

• Only the intercept varies between children, the slope does not. Is this
plausible? Why?
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Special case: Random intercept - Implied covariance

• Here we additionally assume independent errors εi ∼ Nni(0ni, σ2Ini).

• Then, the correlation between two measurements on the same subject is

Cov(Yij, Yik) = d2 + σ2I(j = k)

⇒ Corr(Yij, Yik) =
d2

d2 + σ2
=: ρ, j 6= k.

Interpretation?

• It is thus

– independent of subject i,
– independent of the time points tij and tik, j 6= k,
– always non-negative.
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• In the model with only random intercept and i.i.d. error we thus have

Corr(Yi) =


1 d2

d2+σ2 . . . d2

d2+σ2

d2

d2+σ2 1 . . . d2

d2+σ2

... ... . . . ...
d2

d2+σ2
d2

d2+σ2 . . . 1

 =


1 ρ . . . ρ
ρ 1 . . . ρ
... ... . . . ...
ρ ρ . . . 1

 .

This is also sometimes called compound symmetry.

• In the marginal modeling approach, sometimes the following parametric
form for the correlation is assumed (“uniform correlation model”):

Corr(Yi) = (1− ρ)Ini + ρ1ni×ni.

The random intercept model can be seen as a special case with ρ = d2

d2+σ2.
The uniform correlation model is more general and allows negative ρ.
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More random effects

Example growth data: If the slope varies between children, add a random
slope for variable t. This is sometimes called growth curve model.

Model: Yij = β0 + β1tij + β2Gi + β3Gitij + bi1 + bi2tij + εij, i.e.

Yi = Xiβ + Zibi + εi, bi =
(
bi1
bi2

)
∼ N2(02,D),

with

Xi =

 1 Gi ti1 Giti1
... ... ... ...
1 Gi tini Gitini

 , Zi =

 1 ti1
... ...
1 tini

 , D =
(
d11 d12

d12 d22

)
.
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More random effects - Implied covariance

If we assume εi ∼ Nni(0ni, σ2Ini), we obtain

Cov(Yi) = ZiDZTi + σ2Ini,

this yields

Cov(Yij, Yik) = d22tijtik + d12(tij + tik) + d11, for j 6= k,

and
Var(Yij) = d22t

2
ij + 2d12tij + d11 + σ2.

Now Cov(Yij, Yik) depends on tij and tik! Interpretation? What happens if
we include quadratic terms t2 in Zi? Extrapolation?
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More random effects - Examples growth and sleep data
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Excursus: Linear regression

In linear regression
Yi = xTi β + εi (3.9)

we have the assumption
E[εi|xi] = 0 (3.10)

s.t. E[Yi|xi] = xTi β. If this is not fulfilled, the estimator of β will be biased.

A common reason for violation of (3.10), i.e. endogeneity, is that an
important confounder zi was omitted from (3.9). E.g.

• Yi the number of children born in a village

• xi the number of stork nests in the same village

Omitted variable: zi the number of roofs in the village.
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Assumptions in LMMs

Yij = xTijβ + zTijbi + εij

In LMMs, we have two random variables in the model and two assump-
tions, which need to be fulfilled for β to be unbiasedly estimated.

• The assumption that the residuals εij are independent of the explanatory
variables in Xi is as in the linear model (covariate exogeneity).
Formally: E(εij|xij′, bi) = 0 for all i, j, j′, with xij the jth row of Xi.

• In addition, the bi need to be independent of the explanatory variables
(random effects assumption).
Formally: E(bi|xij) = 0 for all i, j.

Analysis of Longitudinal Data, Summer Term 2016 41



Assumptions in LMMs

Both intra- and inter-individual variation in Yij contribute to the estima-
tion of β and both sources of information can be affected by confounding.

• The first assumption is violated e.g. if the effect of time-varying xij is
confounded by time-varying variable zij
(e.g. Yij =mortality, xij =PM10 and zij =seasonality, see Ch. 1.1)

• For the second assumption, we’ll look at several examples.
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Random effects assumption - Example 1

Consider a randomized trial where at the beginning of the trial, subjects
are randomized to treatment groups (x = 1 or x = 0). In this case, xi
is independent of bi by design and the treatment effect can be unbiasedly
estimated.

While violations of the second assumption cannot happen for x if we
randomize with respect to x, they can occur in observational studies
where we cannot control the x variables and confounding is possible.
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Random effects assumption - Example 2

Consider the model

Yij = β0 + β1PM10ij + bi + εij.

• PM10ij is the personal exposure to PM10, an air pollutant, and

• Yij is the FEV1 value, a measure of lung function, for subject i at time tij

and interest lies in the association between PM10 and FEV1. What happens
if poorer people are

a) less healthy and thus have lower FEV1 values and

b) tend to live closer to big roads and are exposed to higher PM10 levels?
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Then, bi is not independent of PM10ij and the estimate of β1 will be
confounded. Will it be under- or overestimated?

What happens if

1. we cannot measure personal exposure and thus use measurements from
a central monitoring station?

2. we include socio-economic information as fixed effects in the model?
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Random effects assumption - Example 3

Consider the model

Yij = β0 + β1ageij + β2age
2
ij + β3age

3
ij + bi + εij.

• Yij is the life satisfaction of subject i at time point tij in a panel study,

• ageij is the age of subject i at time point tij,

• bi represents the individual tendency to be satisfied with life

and interest lies in the trend of life satisfaction with age.

What if happy people live longer? Then, bi is not independent of ageij
and the estimated trend will correspond to the trend among survivors.
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Fixed vs. random effects

Some people recommend replacing the random effects by fixed effects if
there are doubts about the random effects assumption. Then, only intra-
individual variability contributes to the estimates for β and each subject
serves as its own control, cf. slide 14 in Ch. 1.1. Some pros and cons (see
e.g. Townsend et al, 2013 for a full discussion):

• In the fixed effects model, estimators for β are unbiased (if the first
assumption holds). This is an advantage of the fixed effects model if the
random effects assumption is violated.

• When the random effects assumption is satisfied, random effects models
are more efficient. (“Bias-variance-tradeoff”)
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• Some ni may be too small to estimate all random effects as fixed effects.

• Fixed effects models are more susceptible to violations of the first
assumption, which can be more severe than the violation of the random
effects assumption.

• Fixed effects models cannot estimate effects of time-constant variables
(e.g. gender, treatment). Effects of time-varying covariates are less
precisely estimated than in random effects models due to the additional
degrees of freedom used. (E.g. for the effect of place of residency, only
people who move during the study contribute to the estimate.)

Thus, to decide between a fixed and random effects model, one needs to
weigh the plausibility of the assumptions, whether the effects of interest can
be estimated, and the tradeoff between how much bias can be reduced and
how much efficiency is lost with the fixed effects model.
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Fixed vs. random effects

The Hausmann test compares random and fixed effects model estimates
of β. A significant result is fairly reliable evidence for a bias in the effect
estimates of the random effects model. (Non-significance unfortunately not
necessarily indicates unbiasedness.)

An alternative to the fixed effects model is the so-called hybrid model, e.g.

Yij = β0 + (xij − xi)TβW1 + xiTβG1 + bi + εij

instead of a model including only xTijβ1. While xi =
∑
j xij/ni may be

correlated with bi, the information in xij − xi is orthogonal. Estimates
and standard errors for βW1 are comparable to the fixed effects model,
but time-constant variables can also be included in the model. A test for
βW1 = βG1 provides a Hausmann-like test.
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Random effects assumption - Example 4

Consider this example from Townsend et al, 2013 on US education policy:

NAEPij = xTijβ + δStandardi,j−1 + bi + εij

• NAEPij the average National Assessment of Educational Progress
(NAEP) grade 4 mathematics score in state i in year j

• xij control variables measuring race composition, poverty etc. in state i
and year j as well as year indicators

• Standardi,j−1 the state performance standard for its state grade 4
mathematics test (with time lag), the policy variable of interest

Data for the 50 states are available for only 3 years, with some data missing.
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Random effects assumption - Example 4

• The random effects model yields δ̂ = 0.058 (0.024) (p < 0.05).

• The fixed effects model and the hybrid model

NAEPij = (xij − xi)TβW + xiTβG + δGStandardi

+ δW (Standardi,j−1 − Standardi) + bi + εij

both yield estimates 0.032 (0.023) for δ respectively δW , a smaller and
non-significant value. The estimate for δG is 0.164 (0.041).

• The Hausmann test and the test for δW = δG are both significant. Thus,
the fixed effects model may be accounting for heterogeneity between
states that can bias the δ estimate in the random effects model.
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Overview Chapter 3 - The longitudinal linear mixed
model

3.1 Motivation: A two stage analysis

3.2 The longitudinal linear mixed model

3.3 Marginal vs. conditional view

3.4 Specification of the fixed effects and special cases

3.5 Specification of the random effects and special cases

3.6 Assumptions

3.7 Linear mixed models in R
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The linear mixed model in R

To fit linear mixed models in R, one can use

• function lme in the package nlme (see Pinheiro and Bates, 2000),

• function lmer in the package lme4 (see Bates et al, 2015).

For a larger class of linear mixed models including e.g. smooth terms, see

• functions gam(m) and bam (for large data) in the package mgcv,

• function gamm4 in package gamm4,

(see Wood, 2006), using lme and lmer internally, respectively.
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Differences between nlme and lme4

Shortened quotation from the lme4 manual:

• “lme4 uses modern, efficient linear algebra methods as implemented in
the Eigen package, and uses reference classes to avoid undue copying of
large objects; it is therefore likely to be faster and more memory-efficient
than nlme.

• lme4 includes generalized linear mixed model (GLMM) capabilities, via
the glmer function [see Chapter 10].

• lme4 does not currently implement nlme’s features for modeling hete-
roscedasticity and correlation of residuals.
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• lme4 does not currently offer the same flexibility as nlme for composing
complex variance-covariance structures [. . . ]

• lme4 [. . . ] allows more flexibility for specifying different functions for
optimizing over the random-effects variance-covariance parameters.

• lme4 offers built-in facilities for likelihood profiling and parametric boot-
strapping.

• lme4 is not (yet) as well-documented as nlme.”
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The linear mixed model in R: lme

Function lme: “linear mixed-effects model” in nlme: structure similar to
lm.

The argument random:

• random = ~ 1|subject:

→ “random intercepts” for each subject

• random = ~ 1 + time|subject:

→ “random intercepts” and “slopes” for each subject

• More generally, multilevel models with several nested (or crossed) random
effects can be estimated. Example

random = ~ 1 + time|hospital/subject
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The linear mixed model in SAS

We will focus on R here.

For SAS proc mixed many examples can be found in the book by
Verbeke & Molenberghs, 2000.
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