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Missing data

• Missing data is common in longitudinal studies. Data is missing if a
measurement that was intended to be taken is not taken, or not available
for another reason.

• The reason for missing measurements is important. For example:

– The lab technician accidentally destroyed the blood sample.
– Measurements below the limit of detection are set to missing (censo-

ring).
– The values are missing because the subjects did not show up for their

scheduled visits.
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Notation

Assumption: It is planned to take ni = n measurements per subject.

• Vector of responses (observed and missing) for subject i:

Yi = (Yi1, . . . , Yin)T

• Rij = 1, if Yij is observed, otherwise Rij = 0. For each subject a vector

Ri = (Ri1, . . . , Rin)T

is obtained.

• Ri results in a division of Yi into two components Yo
i (observed) and

Ym
i (missing).

• Subjects with Rij = 1 for all j (i.e. without missing values) are called
completers.
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Missing data patterns

• Dropout / loss-to-follow-up / attrition:

Whenever Yij is missing, so are all Yik for k ≥ j.
Pattern:Ri = (Ri1, . . . , Ri(Di−1), RiDi

, . . . , Rin)T = (1, . . . , 1, 0, . . . , 0)T

with dropout indicator

Di = 1 +

n∑
j=1

Rij.

• Intermittent missing values

Example patterns: Ri = (1, 1, 0, 1, . . . , 1)T , Ri = (1, 0, 1, 0, 1, . . . )T .
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Questions

For missing values, is it allowed to:

• calculate means and variances?

• use ML based methods?

• use the GEE method?

Important: The answer for each method depends on the missing mechanism

• missing completely at random (MCAR)

• missing at random (MAR)

• not missing at random (NMAR)

(Rubin, 1976)
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Missing completely at random (MCAR)

P (Rij = 1|Yo
i ,Y

m
i ,Xi) = P (Rij = 1|Xi).

for i = 1, . . . , N , j = 1, . . . , n.

• The probability of missingness (P (Rij = 0)) is not related to any of the
responses. The distribution of the Yij is the same as that of the Y o

ij,
given Xi.

• Other (stronger) definition: also no connection between the covariates
and the occurrence of missing values,

P (Rij = 1|Yo
i ,Y

m
i ,Xi) = P (Rij = 1).

The observed data are a random sample of the complete data.
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Examples MCAR

• The lab technician accidentally destroyed the blood sample.

• Overlooked question on questionnaire

• Questionnaire lost in the mail

• Did not come to examination because of a death in the family

• Rotating panel: patients by design rotate out of the study after providing
a pre-determined number of measurements.

• Death due to a car accident

• Moving, but with exceptions

→ Try to find out from data collector
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Examples MCAR

Example for

P (Rij = 1|Yo
i ,Y

m
i ,Xi) = P (Rij = 1|Xi).

Weight and sex. Regardless of the weight itself women hesitate to give their
weight:

P (Rij = 1|Yo
i ,Y

m
i ,Xi) = P (Rij = 1|Gi)

with
P (Rij = 1|Gi = W ) > P (Rij|Gi = M).

This kind of MCAR is called MAR if the stronger definition of MCAR is
used.
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Missing at random (MAR)

P (Rij = 1|Yo
i ,Y

m
i ,Xi) = P (Rij = 1|Yo

i ,Xi).

for i = 1, . . . , N , j = 1, . . . , n.

• The probability of missingness (P (Rij = 0)) is not related to the value
that would have been observed if the value had not been missing, but
depends on the observed values.

• The distribution of Y m
i conditional on Y o

i (and Xi) is the same as the
corresponding distribution among the complete cases.

• In practice, MAR is more frequent than MCAR!
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Examples MAR

• Ethical considerations require that a patient is removed from the study
if Yij falls outside a certain range of values (patient is not responding to
the treatment).

• Creatinine level is too bad → patient is dialyzed in a different depart-
ment/hospital.

• Respiratory problems in children → family moves to a place with better
air quality.

. . . always assuming the decision is associated only with observed values Y o
ij.
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Not missing at random (NMAR)

P (Rij = 1|Yo
i ,Y

m
i ,Xi)

cannot be simplified as with MCAR or MAR, i = 1, . . . , N , j = 1, . . . , n.

• The probability of missingness (P (Rij = 0)) depends on the observed as
well as on the unobserved values.

• Also called informative missingness.

• NMAR is (unfortunately!) quite common.
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Examples NMAR

• In a study on pain relief, patients with severe pain are less likely to answer
the phone and give their current pain status.

• Heavy people hesitate to give their weight.

• Major respiratory problems → hospital!
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Dropout

• For intermittent missing values, the reason is often known, as subjects
remain in the study → find out whether MCAR or MAR assumption is
tenable → analysis of available data

• For dropout, we often have to suspect a relation between the dropout
and the measurement process (MAR or NMAR).
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Dropout: Possible reasons

• Other disease, death → MCAR only if unrelated to what is studied!

• Uncooperative patient → MCAR if unrelated to what is studied

• Ineffective therapy → MAR if decision based on Y o
ij, otherwise NMAR

• Moving → MCAR, MAR or NMAR depending on reason

• Patient feeling too sick, which would be reflected in Y m
i → NMAR

• Unknown (“lost to follow-up”: LOFU) → ??
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Dropout: Graphical display

Examples:

• “Survival Curve”

• Individual curves grouped by dropout time

For MCAR, the history of yij values of people “about to drop out” should
be the same (or conditional on Xi) as that of those not dropping out.
→ compare visually or for formal test see Diggle (1989).
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Likelihood-based inference and missing data

For likelihood-based inference, it is most important to distinguish between
MCAR/MAR on the one hand, and NMAR on the other hand.

The joint density of (Yo,Ym,R) is

f(yo,ym, r|Xi) = f(yo,ym|Xi)f(r|yo,ym,Xi).

The joint density of the observable data then factors as

f(yo, r|Xi) =

∫
f(yo,ym|Xi)f(r|yo,ym,Xi)dy

m

MCAR/MAR
=

∫
f(yo,ym|Xi)dy

mf(r|yo,Xi)

= f(yo|Xi)f(r|yo,Xi).
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Likelihood-based inference and missing data

The log-likelihood then is

logL = log f(yo|Xi) + log f(r|yo,Xi).

It is maximized by maximizing the two terms separately. Since the second
term contains no information about the distribution of Y o, we can ignore
it for inference about Y o.

Thus, MCAR/MAR are sometimes jointly referred to as ignorable mis-
singness.
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Likelihood-based inference and missing data

However,

• “ignorability” depends on the likelihood being the basis for inference
(and being correctly specified!). (Standard) GEE is only valid under the
stronger assumption of MCAR.

• if log f(yo) and log f(r|yo) share parameters, ignoring log f(r|yo) will
result in a loss of efficiency.

• this assumes that the distribution of Y o is the target of inference.

Example: A clinical trial for treatment of a life-threatening disease.
Dropout is due to patients’ death. Inference about the distribution of the
survival time and the conditional distribution of Y o given survival may
be more meaningful than about the unconditional distribution of Y o.
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GEE and missing data

• GEE is used for its consistency under misspecified covariance structures
and without distributional assumptions if the mean model is correct.

• Score equation:
N∑
i=1

∂µi

∂β
V−1i (yi − µi) = 0

• Only consistent for MCAR!

• Consider the probability pij of observing Yij conditional on the history
yi1, . . . , yi,j−1 and covariates.

• Assumption: Measurement yij is representative of missing values from
subjects with similar history.

Analysis of Longitudinal Data, Summer Term 2016 22



A variation of GEE

• Robins et al (1995) propose a weighted GEE for MAR, where each obser-
ved measurement gets the weight 1/pij (inverse probability weighting),
upweighting measurements with small probabilities (Pi = diag(pij)):

N∑
i=1

∂µi

∂β
V−1i P−1i (yi − µi) = 0.

• The resulting estimator is consistent under certain conditions including
that the pij are consistently estimated.→More suitable for large samples!

• It requires a parametric model for the pij (with the data providing sparse
information on the dropout process), in a setting where a parametric
model for the covariance structure is avoided.
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Example 1 (Little, 2008)
Suppose ni = 2 for all i, and we have the normal model(

Yi1
Yi2

)
iid∼ N

((
µ1

µ2

)
,

(
σ11 σ12
σ12 σ22

))
= N (µ,Σ).

Suppose that Yi1 is observed for all N subjects, but Yi2 only for the first
r (dropout). MAR assumption: missingness of Yi2 can depend on Yi1, but
conditional on Yi1, it does not depend on Yi2. The likelihood is

Lign(µ,Σ|Y o) =

r∏
i=1

|Σ|−1/2 exp(−1

2
(Y i − µ)TΣ−1(Y i − µ)) (11.1)

×
N∏

i=r+1

σ
−1/2
11 exp(−1

2
(Yi1 − µ1)

2/σ11).
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Example 1

The likelihood can be factored into the marginal distribution of Yi1 and
the conditional distribution of Yi2 given Yi1. The ML estimates then are

µ̂1 =
1

N

N∑
i=1

yi1 σ̂11 =
1

N

N∑
i=1

(yi1 − µ̂1)
2

µ̂2 = ȳ2 + β̂2|1(µ̂1 − ȳ1) σ̂22 = s22 + β̂2
2|1(σ̂11 − s11)

σ̂12 = β̂2|1σ̂11

where ȳj and sjk are sample means and (co)variances from the complete

cases and β̂2|1 = s12/s11 is the regression coefficient regressing Yi2 on Yi1
for the complete cases.
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Example 1

• Large-sample standard errors can be based on the observed information
matrix, or obtained based on bootstrapping the observed data.

• The ML estimate µ̂2 adjusts ȳ2 using available information on the
difference (µ̂1− ȳ1) between averages based on all cases and on complete
cases only, and information on the association between Yi1 and Yi2.

• By contrast, calculating the empirical means and variances for the two
time points would result in unadjusted estimates ȳ2 and s22. So would
using GEE with a working independence assumption corresponding to
ML estimation with σ12 = 0.
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Overview of data analysis methods for missing values

• Complete case analysis

• Available data analysis

• Imputation

• Selection models
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Complete case analysis

• Non-completers are completely deleted.

• Inefficient, wasteful of data (in extreme cases, there are no subjects
without missing values).

• Only valid for MCAR (rare in practice). For MAR or NMAR, this can
introduce bias.

• Useful only if you are only interested in the completers, otherwise not
recommended.
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Available data analysis

• General term for methods that can analyse the available data with
unequal ni.

• More efficient than complete case analysis.

• Only valid for MCAR (rare in practice) or for MAR if likelihood-based
methods are used.
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Example 1 continued

(Yi1, Yi2)
T ∼ N (µ,Σ)

with Yi2 observed only for the first r subjects.

• A complete case analysis would be biased for MAR, yielding µ̂j = ȳj,
j = 1, 2, based only on completers.

• An available case analysis for MAR is fine if ML with general Σ is
used, but would be biased for independent mean estimation or GEE with
incorrect working covariance (cf. p. 20-22).
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Imputation methods

• Last value carried forward: if yij is the last observed value, yik is set to
yij for subsequent missing values. Variations:

– Estimate a time-trend and extrapolate.
– Baseline value carried forward, worst value carried forward.

Strong and often unrealistic assumptions! Data with less variability,
over-optimistic standard errors. Not recommended.

• Methods which draw imputed ym
i from f(ym

i |yo
i ,Xi):

– Propensity based methods
– Predictive mean matching

Subsequent analyses are valid under MAR or MCAR. Multiple imputation
also ensures that uncertainty is properly accounted for.
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Propensity based imputation

• These methods are based on a model for the dropout probability, such
as e.g.

log

[
P (Di = k|Di ≥ k, Yi1, . . . , Yik)

P (Di > k|Di ≥ k, Yi1, . . . , Yik)

]
= θ1 + θ2Yik−1

Which missing mechanism do we have here?

• Missing reponses are imputed based on responses of subjects with similar
estimated dropout probability but who did not drop out.
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Predictive mean matching

• Regression models for Yik based on Yi1, . . . , Yik−1:

E(Yik) = γ1 + γ2Yi1 + · · ·+ γkYik−1

• Each model is estimated based on the subjects with Di > k.

• This results in estimates γ̂ and σ̂ (error variance).

• To account for estimation uncertainty, values γ∗ and σ∗ are drawn from
the distribution of γ̂ (and σ̂).

• This gives the imputed value

γ∗1 + γ∗2Yi1 + · · ·+ γ∗kYik−1 + σ∗ei,

with simulated ei ∼ N (0, 1). (Can be generalized to GLMs.)
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Multiple imputation

• Each missing value is imputed by several (tyically 5 ≤ m ≤ 10) values.
Why is this useful?

• → m data sets are generated
→ m estimates β̂(k) und Ĉov(β̂(k))

• The result is (Rubin, 1987)

β =
1

m

m∑
k=1

β̂(k)

Ĉov(β) =
1

m

m∑
k=1

Ĉov(β̂(k))+

(
1 +

1

m

)
1

m− 1

m∑
k=1

(
β̂(k) − β

)(
β̂(k) − β

)T
.
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Further alternatives

• Weighting methods for MAR (cf. slide 23 for GEE), see e.g. Fitzmaurice
et al. (2004), Chapter 14.

• The EM-algorithm for MAR, see e.g. Molenberghs & Verbeke (2005),
Chapter 28.

The EM-algorithm is also an alternative if values are missing below the limit
of detection / above a cut-off value (censoring).
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Models for dropout

• Idea: Joint modeling of the dropout mechanism and Y i

• Two important approaches: selection models and pattern mixture models

• Selection models are based on the factorization

f(yi, ri|Xi,θ,ψ) = f(yi|Xi,θ)f(r|yi,Xi,ψ)

with f(ri|yi,Xi,ψ) = f(ri|Xi,ψ) for MCAR and f(ri|yi,Xi,ψ) =
f(ri|yo

i ,Xi,ψ) for MAR.

• Pattern mixture models are based on the factorization

f(yi, ri|Xi,ν, δ) = f(ri|Xi, δ)f(yi|ri,Xi,ν).
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Example 1 continued

Consider a selection model for NMAR dropout:

(Yi1, Yi2)
T ∼ N (µ,Σ)

(Ri2|Yi1, Yi2) ∼ Bernoulli(πi)

logit(πi) = ψ0 + ψ1Yi1 + ψ2Yi2.

The likelihood is

L(µ,Σ,ψ|R,Y o) =

r∏
i=1

|Σ|−1/2 exp(−1

2
(Y i − µ)TΣ−1(Y i − µ))πi(ψ)

×
N∏

i=r+1

∫
|Σ|−1/2 exp(−1

2
(Y i − µ)TΣ−1(Y i − µ))(1− πi(ψ))dYi2.
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Example 1 continued

• Maximization requires an iterative algorithm such as the EM algorithm

• The model is weakly identified, and identification is strongly depending
on the model assumptions.

• Thus, it is preferred to either make additional assumptions such as ψ1 = 0
or ψ2 = 0, or to conduct a sensitivity analysis for a range of plausible ψ.

• For ψ2 = 0 (MAR), the likelihood reduces to

L(µ,Σ,ψ|R,Y o) = Lign(µ,Σ|Y o)

r∏
i=1

πi(ψ)

N∏
i=r+1

(1− πi(ψ)),

where Lign(µ,Σ|Y o) is given by (11.1), and ML estimation of µ and Σ
can be based on the ignorable likelihood, as discussed in example 1.
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Overview applicability of methods

MCAR MAR NMAR
Expected value, variance yes (or condi- no no

tional on Xi)
Available case analysis yes no/yes no
Complete case analysis yes, but no no

inefficient
GEE yes no, or no

weighted GEE
ML methods yes yes no
(Multiple) imputation yes yes no
from f(ym

i |yo
i ,Xi)

Selection models yes yes yes
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Discussion

• ML (or Bayesian) inference for ignorable missingness is similar to cor-
responding complete data analyses. However, randomness (MAR) of
missings is an assumption which cannot be verified from the observed
data.

• Non-ignorable models are more challenging, have problems with lack of
identifiability and require assumptions about the missing data mechanism,
e.g. a pametric model for Ri given Y i and Xi in selection models.

• Oftentimes, especially in potential NMAR cases, a sensitivity analysis
under different assumptions is the most sensible alternative to make the
dependence of results on assumptions transparent.
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• If covariate values are also missing, additional work is required, with
multiple imputation being one option.

• Read more e.g. in Diggle et al (2002), Molenberghs & Verbeke (2005)
or Fitzmaurice et al. (2008).
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