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5.1 INTRODUCTION

In prior chapters, group-specific effects were
assumed to be drawn from a distribution, typ-
ically Gaussian. In applied research in the
social and behavioral sciences, economics,
public health, public policy, and many other
fields, alternatives to this choice are often
made, with the most common being the “fixed
effects” approach. In its most basic formu-
lation, group-specific intercepts are modeled
using indicator variables, effectively making
them open parameters in the model and not
assigning them a distributional form. The
choice between random and fixed effects has
implications for the interpretation of param-
eter estimates and for estimation efficiency.1

Specifically,

� the effect estimates for each group will be different
depending on the modeling choice;

� the � estimates for the predictors in the model may
be different depending on the modeling choice;

� the reliability with which one can make predictions
for new groups differs; and

� there is a tradeoff between ef ciency and bias,
with random effects being more ef cient than xed
effects, but potentially biased (we defer formalizing
our de nition of bias to a later section).

The remainder of this chapter will discuss
these options as well as a hybrid version of
the two. It provides guidance as to when an
applied researcher should use each model, and
describes situations when neither is appropri-
ate and other models should be considered.
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We proceed by describing the two models
in Section 5.2 before discussing the differ-
ent assumptions, describing estimation, and
giving advice on when to use each in Sec-
tion 5.3. Section 5.4 outlines an example of
using fixed effects and random effects with
data from the National Assessment of Educa-
tional Progress, a series of large-scale assess-
ments of schoolchildren in the United States.

5.2 THE FIXED EFFECTS AND
RANDOM EFFECTS MODELS

In this chapter, we outline both random and
fixed effects models. We will refer to models
as fixed if they model unit-specific compo-
nents in longitudinal data or group-specific
components in clustered data as separate
parameters, and random effects if they are
drawn from a (often Gaussian) probability
distribution.

We will delve into model specifics shortly,
but here we mention that with grouped data
there are two types of relationship that are in
play: between-group and within-group. Fail-
ure to understand this interplay can result in
an ecological fallacy, in which one makes
inferences about the nature of units based
on information about the groups containing
them. In the context of multilevel models,
we will show that variation naturally divides
into within- and between-group components,
so that potential for misinterpretation exists
whenever the two types of relationship differ
for a predictor—for example, when neighbor-
hood income matters for some outcome, but
relative income within that group does not.
Diez Roux (2004) and Wakefield (2003) give
extensive overviews (see also Gelman, 2006).
We note that the standard ecological fallacy
typically occurs when one does not have both
unit- and group-level data available to disen-
tangle the two types of effects.

5.2.1 The Random Effects Model

Consider the multilevel model

yi j � �0 � �1x1i j � u0 j � �i j � (5.1)

where yi j is the outcome for the i th subject
in the j th group. It is also represented more
explicitly as a multilevel model as

yi j � �0 j � �1x1i j � �i j � (5.2)

where
�0 j � �0 � u0 j � (5.3)

Equation (5.2) is often referred to as the
level one equation and (5.3) is the level two
equation. In both formulations, it is usually
assumed that u0 j � N �0� � 2

u0
� is independent

of �i j � N �0� � 2
�
�. This model proposes that

the values of the outcome, yi j , are based on
the population-level constant, �0, the single
explanatory variable, x1i j and the associated
parameter �1, and a group-specific compo-
nent, u0 j . Although the random effects model
can include more complex random compo-
nents such as two-way (e.g., time- and unit-
specific) intercepts or multiple group-specific
intercepts that have a nested structure (e.g.,
classrooms and schools), in this chapter we
consider a single group-specific intercept to
focus on the choice between random and fixed
effects.

Researchers using random effects models
often focus on the variance components, such
as � 2

u0
. It is instructive, however, to examine

the group-specific effects, as these serve as
controls for all other effects, and thus have
the potential to alter the other effect esti-
mates. In the random effects model, when
u0 j � N �0� � 2

u0
�, given constant �0, we

have �0 j � N ��0� �
2
u0
�, which are group-

specific intercepts. Gelman and Hill (2007,
p. 257) call this a “soft constraint” that
is applied to the intercepts, which shrinks
the estimates of �0 j toward the common
mean �0, a phenomenon they call a par-
tial pooling (see Lindley and Smith, 1972;
Smith 1973; Efron and Morris, 1975; Mor-
ris, 1983; and Kreft and de Leeuw, 1998,
for some background). This term derives
from the “pooled” and “unpooled” model-
ing approaches described in Gelman and Hill
(2007) and introduced in Chapter 1. A pooled
model simply applies OLS or similar estima-
tion techniques to grouped data, ignoring the
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grouping. An unpooled model may be defined
in at least two ways. First, it could be under-
stood as separate regressions, one for each
group. This would entail unique regression
parameters for every predictor as well as the
intercept, and small sample sizes may yield
highly imprecise estimates. A more common
approach is to estimate group-specific inter-
cepts, effectively using one parameter per
group, and to pool the estimates of all other
predictor effects; this definition is suggested
by Gelman and Hill (2007). This is equivalent
to estimating the so-called fixed effects model
and will be what we adopt in our subsequent
discussion.

The intercepts in the random effects model
are a weighted average of estimates from the
two types of pooling. In our simple model
(5.1), assuming the data are balanced, the ran-
dom intercepts and slope coefficients are

��0 j �
n j��

2
y

n j�� 2
y � 1�� 2

u0

� �y j � ��1 �x1 j �

�
1�� 2

u0

n j�� 2
y � 1�� 2

u0

�0 (5.4)

��1 �

�
��

i

�
j

�x1i j � � �x1 j �
2

�
�
�1

(5.5)

�

�
��

i

�
j

�x1i j � � �x1 j ��yi j � � �y j �

�
� �

where

� � 1 �

�
� 2
�

� 2
�
� n j� 2

u0

�

n j is the number of observations within a
group (group size), �y j and �x1 j are within-
group means of the outcome variable and the
explanatory variable, and � 2

y , � 2
u0

, and � 2
�

are
variances of y, u0, and �, respectively (Gel-
man and Hill, 2007, p. 258; Afshartous and de
Leeuw, 2005, pp. 112–13; Wooldridge, 2010,
p. 287).2 In order to utilize these formulas
to get estimates of the coefficients, one must
replace the variances and the intercept with
their estimates.

In Equation (5.4), the group-specific resid-
uals ( �y j � �1 �x1 j ) employ the �1 from the no-
pooling model (or fixed effects model) and
the overall intercept (�0) is obtained from
the complete pooling model (or OLS). Like-
wise, the slope estimate in Equation (5.5), ��1,
reduces to that of the fixed effects model when
� � 1 and that of OLS when � � 0. That
is, two weight parameters, �n j��

2
y ���n j��

2
y �

1�� 2
u0
� and �, serve as a measure of the

shrinkage toward the unpooled estimators.
When group-level effects are estimable with
great precision, � 2

u0
becomes large relative

to � 2
y and � 2

�
, and these weight parameters

approach one, very little shrinkage occurs,
and the random and fixed effects estimates
are nearly identical. Conversely, when � 2

u0
becomes relatively small, these two weight
parameters approach zero, and shrinkage to
the population-level effect (ignoring group)
becomes nearly complete.

When the assumptions in the random
effects model hold, these above estimates are
more efficient than their fixed effects coun-
terparts, and this is one of the key reasons for
choosing such models.The assumptions, how-
ever, may be more or less plausible in different
applications, such as randomized experiments
versus observational studies. See Chapter 12
for further discussion.

5.2.2 Fixed Effects Model

If one wants to estimate group-specific inter-
cepts without imposing a distribution or uti-
lizing information from the other groups, one
may choose to estimate a fixed effects model.
The model can be represented in a similar way
to equation (5.1), but with a modification to
the group effects:

yi j � �0��1x1i j �

J�
j �
�2

u0 j � I
�

j � j �
�
��i j �

(5.6)
with the indicator function I

�
j � j �

�
track-

ing the J � 1 group-level effects (group 1
taken as the reference category). The impli-
cation of this reformulation is that the group
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effects u0 j may be correlated with the other
predictor (or predictors, more generally).
In situations in which the orthogonality of
the random effects and other predictors is
implausible, fixed effects models are one
alternative.

Another way to characterize this model in
the context of multilevel models is to describe
the random effects distribution as having infi-
nite variance, � 2

u0
� �, so the model does

not borrow any information across groups.3

Although, in this sense, the fixed effects model
is a special case of random effects, our sim-
plest fixed effects model is not really a mul-
tilevel model in the traditional use of the
term, as the group level has been reduced to
a set of indicators and their corresponding
effects.

A tradeoff that may not be immediately
apparent is that one cannot include any group-
level explanatory variables, such as each
group’s average income, due to collinearity
with the group fixed effect. If one is interested
in variance components and how they change
with the addition of predictors at group and
subject level, then one is severely hampered
by the fixed effects approach. However, one
may not have this type of interest.

Fixed effects models allow group-specific
components u0 j to be correlated with other
covariates x1i j , which is certainly a less
restrictive approach. This has led some
researchers to interpret these components as
controls that proxy for any omitted variable
that is “fixed” or constant for the entire group.
However, the form of “omitted variable” that
may be captured this way is quite restric-
tive (see Baltagi, 2005; Wooldridge, 2010,
for some discussion of omitted variable bias
and how it relates to this model; see also
Chapter 12). At a minimum, it is clear that the
omitted confounder must be time- (or group-)
constant.

Of course, one may estimate (5.6) using
OLS, but in practice, a demeaning approach,
to be described in the next section, is usu-
ally employed. Given the estimators of ran-
dom effects model, the derivation of fixed

effects estimators is straightforward. By set-
ting � 2

u0
� � in (5.4) and (5.5),

��0 j � �y j � ��1 �x1 j � where

��1 �

�
��

i

�
j

�x1i j � �x1 j �
2

�
�
�1

�

�
��

i

�
j

�x1i j � �x1 j ��yi j � �y j �

�
� �

These fixed effects estimators are often called
the within estimators because they do not
attempt to explain between-group differences,
and are solely based on deviations of x1i j and
yi j from the respective estimated group means
�x1� j and �y

� j . Fixed effect methods control for
all stable characteristics of the groups in the
study. In a longitudinal study, this would mean
that fixed effects control for time-invariant
characteristics of each individual, such as per-
sonal history before the observation period.

While we have briefly noted some of the
differences between the two estimators, our
next section will provide more specific details
of those estimation procedures and then dis-
cuss the relative merits or conditions favoring
each of the techniques.

5.3 A COMPARISON OF THE TWO
ESTIMATORS

This section describes the assumptions behind
the fixed and random effects models, outlines
the estimation techniques of both models and
provides general advice regarding when to use
and not use each technique. We then describe
some hybrid models developed that satisfy
the “random effects assumption” while still
offering some of the benefits of fixed effects
models.

5.3.1 The Assumptions of Each
Model

Wooldridge (2010) states that the fixed effects
model must satisfy the strict exogeneity
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assumption, E��i j �x1i � j � u0 j � � 0 for all val-
ues of i � given any i , to obtain an unbiased
fixed effects estimator in the presence of any
unobserved group-specific confounders. That
is, �i j is not only independent of its contempo-
raneous covariates but also should be indepen-
dent of the covariates that belong to the same
group (x1i � j such that i � �� i). If the condition
on �i j is not met in the fixed effects model,
then potential unobserved omitted variables
could bias the estimator for x1i j ’s effect.

In addition to this strong exogene-
ity assumption, the random effects model
assumes conditional mean independence of
group-specific effects u0 j given all covariates
x1i j (Wooldridge, 2010). Formally,

E�u0 j �x1i j � � E�u0 j � � 0�

This assumption is also referred to as orthogo-
nality or, somewhat less formally, no correla-
tion between u0 j and x1i j (Cov�u0 j � x1i j � �

0). Usually it is further assumed that u0 j �

N �0� � 2
u0
�. This is perhaps the fundamen-

tal difference between the fixed and random
effects approaches: the latter assumes that u0 j
are orthogonal to �i j and to any predictors
x1i j in the model, while the former implicitly
allows correlation with predictors.

This same concern of bias under violation
of assumptions exists in the random effects
model, but the additional assumption that the
random effects are orthogonal to explanatory
variables may be harder to justify, particu-
larly where causal inference is the goal. How-
ever, in practice the researcher may wish to
trade a small amount of bias for efficiency,
and we reiterate that the hybrid models we
present in Section 5.3.5 provide a useful com-
promise approach. Causal modeling for mul-
tilevel models requires a much deeper frame-
work than we present in this chapter—see
Chapter 12 of this volume for further discus-
sion of assumptions in multilevel models for
causal inference.

The differences in the above assumptions—
and their implications—has led some
researchers to frame the choice between
random and fixed effects models as a

bias/variance trade-off. Random effects
models may be biased (for the within-group
effect) when the model assumptions fail to
hold, but they are more efficient than fixed
effects models when they do. The bias is often
framed as a form of omitted variable bias
(see Bafumi and Gelman, 2006). Specifically,
if there is a group-constant confounder c
omitted from the model, and it is correlated
with another predictor, such as x1i j , (and the
outcome), then the corresponding parameter
�1 will be biased when c is omitted. One of
motivations for using grouped data is that we
can recover the (within-group) �1 that would
have been estimated had we included the
confounder c. With respect to recovering this
parameter, fixed effects models are unbiased
and random effects models are efficient (this
is the setup for the Hausman Test). However,
this statement applies only to the basic forms
of these models; in Section 5.3.5 we show
that centering can be used to achieve the
same goal for random effects models.

5.3.2 Estimating Each Model

Fixed effects estimation can be conducted
either by group demeaning both the dependent
and explanatory variables using the within
transformation (sometimes called the fixed
effects transformation), or by adding a set of
dummy variables for each group j and using
OLS, as previously described. To perform the
within transformation, we can average equa-
tion (5.6) for each group, and then subtract the
new group means from the original, obtaining:

yi j � �y j �
�
�0 � �1x1i j � u0 j � �i j

�

�
�
�0 � �1 �x1 j � u0 j � �� j

�

(5.7)

� �1�x1i j � �x1 j �� ��i j � �� j ��

Thus, the demeaning of the original equation
ensures that demeaned covariates are orthogo-
nal to any group effects, u0 j . It also implicitly
controls for group effects, or partials them out
of the model.The within nature of the effects is
evident from this formulation, for now a one-
unit change in the demeaned covariate reflects
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change relative to one’s group. Chapter 6 dis-
cusses this concept in some detail.The estima-
tion of equation (5.7) with OLS yields fixed
effects estimators.4

Alternatively, fixed effects estimators can
be obtained by adding a set of group indicators
as explanatory variables and applying OLS to
equation (5.6). These two methods are equiv-
alent; the interested reader can consult David-
son and MacKinnon (1993) and Wooldridge
(2010).

Random effects models may be estimated
in a variety of ways, including feasible gen-
eralized least squares (FGLS), maximum-
likelihood estimation (MLE), or Bayesian
approaches with MCMC. See Chapters 3 and
4 of this book, Hsiao (2003), and Gelman
and Hill (2007) for an overview of poten-
tial approaches to estimation. Here, we intro-
duce a step-by-step approach to calculate ran-
dom effects estimators given by Johnston
and DiNardo (1997).5 Each step illuminates
important properties of random effects mod-
els, but the main idea is to find the weight
parameter, �. Random effects estimators are
partial-pooling estimators situated between
no pooling (or fixed effects) and complete
pooling (or OLS) estimators, and � deter-
mines the proportion of these two quantities.

The first step is to find no-pooling and
complete-pooling estimators. This can be eas-
ily done by estimating (5.6) or (5.7) and
by estimating (5.1) without a group-specific
component (u0 j ) using OLS. Second, using
the residuals obtained in the first step, we esti-
mate� 2

�
and� 2

u0
using the following formulae:

�� 2
�
�

���

F E ��F E

n�n j � k � 1�

�� 2
u0
�

���

O L S ��O L S

n � k
�

�� 2
�

n j
�

where ��F E is a residual vector from the
no-pooling model, ��O L S is that from the
omplete-pooling model, and k is the num-
ber of explanatory variables. Now, we have
all the information required to calculate �.
Remember, again, that the fixed effects model
is defined to be the same as the unpooled

model mentioned above, while the final step
for this approach to estimating a random
effects model is simply to regress yi j � �� �y j on
x1i j � �� �x1 j . To repeat, this regression is iden-
tical to that of the fixed effects model when
� � 1, and that of OLS when � � 0. Because
0 � � � 1, one way to conceptualize the ran-
dom effects estimator is as the regression of
partially demeaned variables.

Another way of conceptualizing and then
estimating random effects models is through
a matrix representation of predictors and error
structure and vector notation for outcomes.
This requires specification of a complex
covariance structure, in which some between-
element correlation must be modeled. Typi-
cally, observations are assumed independent
across groups, but not within groups, resulting
in a block-diagonal structure. An example of
a classic random intercepts model is given in
Chapter 2, row 4 of Table 2.2; in matrix nota-
tion, using the terms X , Z , �, G, and R to
capture the fixed and random effects designs,
the fixed effects parameters, the covariance
of the random effects, and the covariance of
the errors, respectively, the outcome vector
y � N �X�� ZG Z ��R�. Estimation is usually
made using the method of maximum likeli-
hood, but Bayesian approaches are also com-
mon. As a by-product of this notation, we
can express the best linear unbiased predictor
(BLUP; see Robinson, 1991) of the random
effect vector for group j as:

�u j � E�u j �Y� j � X � j � Z � j � ��� (5.8)

� G Z �

� j �Z �

� j G Z � j � R��1�Y� j � X � j ����

where “	 j” refers to that portion of the vector
or matrix associated with group j (over all
associated i). In the case of a random intercept
model, Z , G, and R have simpler structure, so
this becomes:

�u0 j � E�u0 j �Y� j � X � j � Z � j � ��� ��
2
u � ��

2
�
�

� �� 2
u � ��

2
u Z �

� j Z � j � �� 2
�

I ��1�Y� j � X � j ����

While most of our discussion assumes some
interest in estimating these effects, we reit-
erate that random effects models estimate
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the parameters governing the effects, while
fixed effects models incorporate them through
group-specific parameters. The BLUPs are
post hoc “best guesses” of the group effects,
which, under likelihood theory, have asymp-
totic distributions, and thus known precision.
A new group’s effect along with its precision
could thus be estimated using (5.8). In the
case of fixed effects, it is possible to define an
analogous prediction for a group effect from
residualized outcomes, but the lack of model
assumptions offers no shrinkage of that pre-
diction, nor an estimate of its precision that
utilizes information from all groups.

5.3.3 The Debate Between Fixed
and Random Effects

Whenever a textbook introduces the random
and fixed effects models, it discusses which
method is to be used when. However, read-
ers are sometimes perplexed by the wide
range of prescriptions proposed by different
textbooks. The goal of this subsection is to
provide some guidance on the opinions and
prescriptions encountered throughout the lit-
erature. Here we provide three criteria, namely
satisfaction of the assumptions, compatibil-
ity with the quantities of interest, and trade-
off between bias reduction and efficiency, on
which researchers can base their judgment in
selecting a model.

The first criterion is whether the selected
method satisfies the required assumptions.
We have pointed out that the random effects
assumption, or conditional independence
between the covariates and group-specific
components, may be unrealistic. An advan-
tage to the fixed effects model is that it allows
for group-specific components to be corre-
lated with the covariates. However, when the
random effects assumption is satisfied, ran-
dom effects models are more efficient. As
we see in the next section, the Hausman test
takes advantage of this property to adjudicate
between the choice of fixed or random effects.

Although the fixed effects model requires
fewer assumptions than the random effects

model, this does not necessarily mean the
fixed effects model is always more robust
against violation of its assumptions. In par-
ticular, the fixed effects model is known to be
more susceptible to several violations of the
regression assumptions and other problems
typical of regression modeling. For example,
the impact of measurement errors in covari-
ates is amplified in fixed effects models (John-
ston and DiNardo, 1997). A drawback of the
fixed effects model is its susceptibility to the
violation of strict exogeneity. As discussed in
Section 5.3.1, under the assumption of strict
exogeneity, the error terms must be orthogo-
nal to any values of the covariates that belong
to the same group. Typically, this assump-
tion is violated when there is an endogenous
covariate in panel data or when a subject’s out-
come may affect another subject’s outcome
within the same group. To be fair, the random
effects model must also satisfy the strict exo-
geneity assumption. However, because ran-
dom effects estimators are derived from both
within-group and between-group variations,
the latter of which is unaffected by the strict
exogeneity assumption, the violation has the
potential to bias fixed effects estimators more
(Johnston and DiNardo, 1997).

The second criterion is whether the quan-
tities of interest are estimable with the fixed
effects model. Specifically, the quantities of
interest obtained from a fixed effects model
are limited in two ways. First, fixed effects
models cannot estimate the effect of a variable
that has no within-group variation because
fixed effects subsume all observed and unob-
served group-specific variation. For example,
one cannot estimate the effect of race or gen-
der with the panel data of repeated individ-
ual observations because race and gender do
not change over time. Also, with grouped data
that contain students’ academic performance,
one cannot use classroom fixed effects if the
students are treated on a classroom basis. Fur-
ther, even if explanatory variables have some
within-group variance, they are often impre-
cisely estimated in fixed effects models due
to the additional degrees of freedom used up
(Ashenfelter, et al., 2003).
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As alluded to previously, fixed effects mod-
els have a limited capability to make predic-
tions about the distribution of an outcome
variable at different levels. For example, with
the random effects model, a researcher whose
interest is the effect of extended class hours
on students’ test scores can predict the distri-
bution of the test scores at classroom, school,
or population level. With the random effects
model, a researcher can incorporate the infor-
mation from random intercepts at different
levels into the predictive distribution of the
outcome variable and this extends to new
observations and groups. Although it is pos-
sible to estimate fixed effects for new groups
in an ad hoc manner in fixed effects models,
the precision of those estimates is not read-
ily available, nor does any parameter directly
reflect the overall between-group (and, in
more nested models, between-level) variation.
This observation has led some researchers to
frame the tradeoff between fixed and random
effects as: random effects are samples from a
population while fixed effects represent the
entire population of interest or conditional
inference on the available groups in the sam-
ple (see, for example, Mundlak, 1978). The
basis for this characterization is classical pre-
sentations of ANOVA; we have shown that
the implications of the choice on parameter
estimates requires the practitioner to consider
additional implications of the choice.

The final criterion is the tradeoff between
how much bias can be reduced and how
much efficiency is lost with the fixed effects
model. Fixed effects models add group-
specific indicators as explanatory variables,
controlling for time-constant, homogeneous
group-specific confounding, including that
due to unobservables, provided the underlying
assumptions hold.This means that, to return to
the example of panel data on individuals, con-
founding variables such as personal or family
background before the observation period and
any personal attributes such as race, gender,
or genetics are controlled for, up to the valid-
ity of the model assumptions, primary among
which is the assumption that group effects

have no heterogeneity within that group (e.g.,
no change over time in the panel data set-
ting). In grouped data, e.g., observations on
students in classrooms, a fixed effects model
would control for quality of teachers, family
background, and any experiences that class-
mates might share. It is the promise of control-
ling for such confounders, and the expectation
that they are always lurking, that has led some
researchers to endorse primarily fixed effects
modeling with multilevel data (see, for exam-
ple, Allison, 2005).

However, the contribution to bias reduction
with the fixed effects model must also be eval-
uated in terms of its loss of efficiency. Fixed
effects models lose their efficiency, particu-
larly in the following two instances. First, for
a large number of groups and a small num-
ber of within-group observations, the num-
ber of degrees of freedom consumed by the
fixed effects will be large. For example, if
a researcher has panel data that consist of
100 group observations (J � 100), the intro-
duction of a fixed effects model reduces the
degree of freedom by 99. Or, in the panel case,
if the number of time periods is two, the fixed
effects model halves the degrees of freedom.
The tails of the t-distribution become thicker
as the degrees of freedom decreases, which
implies that the coefficients are estimated with
greater uncertainty. Goldstein (2003) advises
using the fixed effects model when there are
a few groups and moderately large numbers
of units in each. Snijders and Bosker (1999)
also advise using a random effects model if
the number of groups is more than ten. Sec-
ond, when explanatory variables have little
within-group variation, they are highly cor-
related with the fixed effects, and fixed effects
estimators will be inefficient (Bartels, 2008).
In a simple example, suppose that a researcher
is interested in estimating a policy effect using
the panel data of 50 states in the U.S. If only 10
states changed the policy during the observed
period, the fixed effects estimators are calcu-
lated based on these 10 states, ignoring 40
states in the data because fixed effects sub-
sume all time-invariant covariates.
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To make the choice between fixed and ran-
dom effects, a researcher needs to consider all
of what we have discussed, such as the plau-
sibility of the random effects assumption and
strict exogeneity, the need to include group-
level predictors, efficiency, degrees of free-
dom, the presence and degree of measurement
error in the data, and the amount of within-
group variance.

5.3.4 Comparing Fixed Effects
and Random Effects: The
Hausman Test

Although most of the criteria for the choice
between fixed and random effects models
require subjective judgments, test statistics
have been developed for some of them. The
Hausman test (Hausman, 1978) is most fre-
quently used to check the validity of the ran-
dom effects assumption, namely the condi-
tional independence between group-specific
intercepts (u0 j ) and covariates (xi j ). Briefly
speaking, the Hausman test is a comparison
between the parameter estimates of the fixed
effects and random effects models, and sup-
ports the random effects assumption if the dif-
ference between two parameters is sufficiently
small.

To see the logic, let us show the formal def-
inition of the test statistic, H , below:

H � � ��RE � ��F E �
�� �VF E � �VRE �

�1

� ��RE � ��F E ��

where H � �2 with k degrees of freedom
(the number of time-varying coefficients in
both models), �� denotes a vector of estimated
coefficients, �V denotes a variance-covariance
matrix of estimators, and the subscripts RE
and F E denote the random or fixed effect
estimator as the source of the estimates. We
test the null hypothesis that the results of the
two estimators are not different. When the
random effects assumption holds, both the
fixed and random effects estimators are con-
sistent. However, when the assumption does
not hold, only the fixed effects estimator is
consistent, and the random effects estimator is

biased. Moreover, when the assumption holds,
the fixed effects estimator is inefficient com-
pared to the random effects model. As the
violation of the assumption becomes less seri-
ous, the difference in point estimates between
two parameters decreases in the numerator,
while the difference in variances increases in
the denominator. Thus, the size of H is inter-
preted as the extent of the deviation from the
assumption.

It must be noted, however, that the Haus-
man test does not always provide a defini-
tive answer. One problem is that although sta-
tistical significance of the test statistic, H ,
is fairly reliable evidence for the bias in the
random effects estimates, statistical insignif-
icance is not necessarily evidence for unbi-
asedness. This is because the Hausman test
relies on the consistency of the two estimators.
As (5.4) and (5.5) indicate, fixed and random
effects estimators converge only if the group
size (n j ) and/or the within-group variance
(� 2

u0
) is large. Thus, in a small finite sample

and/or with covariates that have little within-
group variance, these two estimators may not
significantly differ from each other even when
the random effects assumption is violated, and
the Hausman test cannot distinguish between
the satisfaction of the random effects assump-
tion and the lack of convergence.6 A number
of studies have been conducted to improve the
performance of the Hausman test. Ahn and
Low (1996) refined the Hausman test to bet-
ter detect the violation when the composite
error term (u0 j � �i j ) contains little within-
group variance (� 2

u0
). Bole and Rebec (2004)

show that a bootstrap version of the Haus-
man statistics marginally improved its perfor-
mance when the violation is minimal. To date,
none has been established as a definitive alter-
native to the Hausman test.

5.3.5 The Benef its of Both
Models: Hybrid Models

The classic back and forth of fixed versus
random effects is that a researcher should
have less concern about bias when using fixed
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effects, while random effects are more effi-
cient. However, several interesting compro-
mises have been proposed. The two most
prominent approaches are correlated ran-
dom effects (for example, Mundlak, 1978
and Chamberlain, 1982) and adaptive center-
ing (Raudenbush, 2009). Several other recent
papers (Gelman, 2006; Bartels, 2008; Ley-
land, 2010) also propose various solutions to
the correlation between predictors and ran-
dom effects that allow researchers to more
comfortably estimate varying parameters.

The literature has accurately redefined the
random effects assumption outlined above
as one of cluster confounding. When only
a single, unadjusted version of a predictor
is included in a model, standard random
effects approaches implicitly assume that the
within- and between-group effects are equal
for changes in any component of xi j (Skrondal
and Rabe-Hesketh, 2004; Rabe-Hesketh and
Everitt, 2006; Zorn, 2001; Bartels, 2008). We
can decompose any particular x1i j into differ-
ent between- and within-group effects, which
we can call x B

1 j and xW
1i j , and the result is that

�1 is a weighted average of the two processes.
Bafumi and Gelman (2006) label this a type
of omitted variable bias, and go on to pro-
pose group mean centering as a workaround
solution. This is a form of the hybrid model
described in Allison (2005).

In the case of one predictor, a hybrid model
would be

yi j � �0 � �W 1�x1i j � �x1 j �

��G1� �x1 j �� u0 j � �i j �

where �W 1 captures the within-group effect
of the predictor x1, �G1 captures the between-
group effect, and u0 j is a random effect. All
other terms, such as the group means �x1 j , are
as they have previously been defined, as are
the distributional assumptions on the stochas-
tic terms. The within-group effect should be
the same as that obtained via the fixed effects
estimator.7 Two things are unique about this
approach: first, we can include group-constant
predictors, such as �x1 j , in the model. In
fact, any group-constant predictors may be

included without affecting�W 1, as �x1i j��x1 j �

is orthogonal to any group-constant predic-
tor. Second, the random intercept variance �u0

measures the remaining between-group vari-
ation in level, and inference for this param-
eter is obtainable. In the fixed-effects set-
ting, say, using group-specific indicators, one
cannot include additional group-specific pre-
dictors, and the inferential framework for
assessing between-group variance is some-
what ad hoc (we describe this in the exam-
ple). In this sense, the hybrid method has all
of the advantages of both random- and fixed-
effects approaches. Allison (2005), drawing
in particular on Neuhaus and Kalbfleisch
(1998), describes how this model may be
implemented in the SAS Statistical Program-
ming language, and notes that a Wald test of
the hypothesis �W 1 � �G1 � 0 provides a
Hausman-like test of whether random effects
models provide the same coefficients of inter-
est as the fixed effects models.

The above approach is also quite similar
to Mundlak’s (1978) formulation, and simply
adds the mean for each time-varying covari-
ate. This identifies the endogeneity concern as
a result of attempting to model two processes
in one term (see also Snijders and Bosker,
2012, p. 56; Berlin, Kimmel, Ten Have, and
Sammel 1999). Others similarly argue for unit
characteristics that are correlated with the
mean (Clark, Crawford, Steele, and Vignoles,
2010). Bartels (2008) and Leyland (2010) are
more interpretable reformulations of Mund-
lak (1978). Proponents of fixed effects either
call this method a compromise approach or a
form of the Hausman test to choose between
fixed and random effects (Allison, 2009, pp.
33–5; Hsiao, 2003, pp. 44–50; Wooldridge,
2010; Greene, 2011; and others). In truth, they
are essentially the same model as those argued
for by Bafumi and Gelman (2006), Gelman
and Hill (2007), and throughout the multi-
level models literature: random effects mod-
els with additional time-invariant predictors,
which address the exogeneity assumption.

We also note that in fields such as psychol-
ogy and education, group mean centering has
a long history (e.g., Bryk and Raudenbush,
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1992; Raudenbush and Bryk, 2002), but
the connections to the econometric fixed-
effects approach have only been made more
recently (Allison, 2009). Lastly, the practical
researcher should always check the plausibil-
ity of the assumptions behind the modeling,
no matter the name, and realize that not all ran-
dom effects models place the same demands
on the random effects assumption.

5.3.6 Other Extensions

If a researcher is interested in the causal
effects of (potentially time-dependent) treat-
ments on time-varying regressors, neither
fixed nor random effects may be appropriate
(see Sobel, 2012). The methodological chal-
lenge arises because the effects of later treat-
ments may themselves be outcomes of earlier
instances of the treatment. Structural nested
models, proposed in Robins (1993, 1994,
1997), were designed to estimate the effect
of time-varying treatments, while marginal
structural models (Robins, 1998; Robins, Her-
nan, and Brumback, 2000; Robins and Her-
nan, 2009) are a more recently developed
alternative approach. This issue is discussed
in Chapter 12 as well.

5.4 AN EXAMPLE: PROFICIENCY
STANDARDS AND ACADEMIC
ACHIEVEMENT

To illustrate the fixed and random effects
approaches, we consider an open question
in U.S. education policy: are more rigor-
ous or stringent performance standards on
state assessments associated with improved
academic outcomes? Although states in the
U.S. develop their own assessments and set
their own proficiency standards, the Federal
government assesses student performance for
state-representative samples using a series of
common tests known as the National Assess-
ment of Educational Progress or NAEP.8

The National Center for Education Statis-
tics publishes a series of studies that use the

NAEP to place the states’ performance or
proficiency standards on a common metric—
the NAEP scale for a given subject and grade
level (NCES, 2011). This enables the creation
of a panel dataset at the state level that includes
states’ performance on NAEP, states’ profi-
ciency levels or the “cutscores” that they set
on their own state assessments mapped onto
the NAEP scale, and an additional set of time-
varying covariates measuring various student
demographics and other factors shown to be
related to academic outcomes. These data can
be used to estimate the relationship between
the stringency of states’ performance stan-
dards and the average academic achievement
of their students.

Specifically, the models estimated in this
section condition the state average score on
NAEP grade 4 mathematics (the outcome
measure) on the following covariates:

� the state pro ciency or performance standard for
its state grade 4 mathematics test mapped to the
NAEP scale (the policy variable of interest);

� the percentage of students in the state who are
eligible for free or reduced price school lunch as a
measure of poverty;

� the percentage of disabled students;
� the percentage of English language learners;
� the percentage of Black students;
� the percentage of Hispanic students;
� the percentage of Asian students; and
� the percentage of NativeAmerican orAlaska Native

students in each state.

NAEP is given at the state level every other
year, but state test mapping data—the policy
variable of interest—are currently only avail-
able for academic years 2004–5, 2006–7, and
2008–9. Thus, for these examples, T � 3.
In the following models, dichotomous indica-
tors or fixed effects for time periods are also
included to control for any common trends
among the states during this time period.Also,
not all data are available for all states in each
time period, but these data are assumed to
be missing completely at random (Little and
Rubin, 2002; see Chapter 23 of this volume).
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Table 5.1 Estimation Results: Random Effects
Model

Variable Coefficient (Std Err.)

lagged standard 0. 058 (0.024)
% free and reduced lunch 0. 086 (0.035)
% disabled 0. 000 (0.001)
% ELL 0. 001 (0.001)
% Black �0. 212 (0.041)
% Hispanic �0. 115 (0.039)
% Asian �0. 119 (0.051)
% Indian �0. 300 (0.108)
2008 0. 061 (0.363)
2010 1. 278 (0.451)
Intercept 236. 495 (5.577)

N 132
�u0 2.743
�

2
�10� 85.127

Finally, because it is theoretically unlikely that
a change in state standards would immediately
translate into a change in academic achieve-
ment, the mapped state proficiency standard is
included in each specification below as lagged
one time period (two years).

5.4.1 The Random Effects Model

If we are willing to assume that the unobserv-
ables are uncorrelated with the other covari-
ates, we can estimate the model:

NAEPi t � xi t�� �Standardi�t�1� u0i � �i t �

with the random effects estimator, assuming
that u0i � Normal�0� �u0�. The results are
presented in Table 5.1. The key coefficient
of policy interest, �, is positive and statisti-
cally significant at conventional levels, imply-
ing a positive relationship between stringency
of academic performance standards and stu-
dent achievement. The between-states vari-
ance component is estimated to be ��u0 �

2�743.

5.4.2 The Fixed Effects Approach

An alternative means of estimating the linear
unobserved effects model is by means of the

fixed effects transformation (time demeaning)
to eliminate the time-invariant unobservables:

NAEPi t � NAEPi �

�xi t � �xi ��

� ��Standardi�t�1 � Standardi �

� �i t � ��i �

Here, we see a substantively different result
(Table 5.2). The estimated coefficient for the
policy variable of interest, lagged state pro-
ficiency standard, is much smaller in magni-
tude and no longer statistically significant at
conventional levels (p � �175, two-tailed).
We note that an estimate of the between-states
variation captured in this fixed effects specifi-
cation is much larger, at ��u0 � 9�936. This
standard deviation is based directly on the
50 state fixed effects implicitly estimated in
this model (values not shown). Inference for
this variance component is made indirectly
through an F-test on the underlying fixed
effects. It is highly significant in this case,
but implies something about the states in the
sample—at least one has non-zero deviation
from the mean outcome level, net of all else—
rather than a property of all states in the pop-
ulation (at other historical periods, for exam-
ple). This value is substantially larger than
that estimated in the random effects model,
suggesting either that there is additional state-
level variation that should be modeled, or that
fixed effects models are overestimating the
differences we would observe in this popu-
lation under some sampling mechanism.

5.4.3 The Hausman Test

So which is the correct specification?
Although it does not provide a definitive
answer, the Hausman test may be useful to
the applied researcher to guide the choice
between the FE and RE models, assuming
unobserved covariates. For the example data,

H � � ��RE � ��F E ��� �VF E � �VRE ��1

� ��RE � ��F E �

� 49�78�



“Handbook Sample.tex” — 2013/4/15 — 23:01 — page 85

5.5 CONCLUSION 85

Table 5.2 Estimation Results: Fixed Effects
Model

Variable Coeff. (Std Err.)

lagged standard 0.032 (0.023)
% free and reduced lunch 0.059 (0.037)
% disabled 0.0004 (0.001)
% ELL 0.001 (0.001)
% Black �0.257 (0.305)
% Hispanic 0.037 (0.234)
% Asian �0.896 (0.387)
% Indian 0.087 (0.385)
2008 �0.117 (0.349)
2010 0.135 (0.556)
Intercept 237.953 (7.537)

N 132
�u0 9.936
F �59�72� 2.676

Since H � �2 with k � 10 degrees of free-
dom (recall, the number of time-varying coef-
ficients in both models), the null hypothesis
that the difference in estimated coefficients
between the two models is not systematic is
rejected at p � �0005. Thus, the results of
the Hausman test suggest that the fixed effects
model may be accounting for important unob-
served heterogeneity that may otherwise be
biasing the observed relationships.

5.4.4 The Hybrid Model

Alternatively, as noted in Section 5.3.5 above,
one may instead fit a “hybrid” model of the
fixed and random effects approaches:

NAEPi t � �xi t � �xi ���

� �xi�g � ���Standardi�t�1

� Standardi �

� �gStandardi � u0i � �i t �

The results of this model, presented in
Table 5.3, are informative. The hybrid model
yields the same coefficients for within-state
effects as the fixed effects model, and very
similar precision. The variance component
	u0 has been reduced to 2.712, a small
drop from the random effects model’s find-
ings, reflecting the additional explanatory

Table 5.3 Estimation Results: Hybrid Model

Variable Coeff. (Std Err.)

centered lagged standard 0.032 (0.023)
centered % free/reduced lunch 0.058 (0.037)
centered % disabled 0.000 (0.001)
centered % ELL 0.001 (0.001)
centered % Black �0.254 (0.305)
centered % Hispanic 0.045 (0.234)
centered % Asian �0.902 (0.386)
centered % Indian 0.091 (0.384)
centered 2008 �0.120 (0.348)
centered 2010 0.135 (0.555)
mean lagged standard 0.164 (0.041)
mean % free/reduced lunch �0.412 (0.050)
mean % disabled �0.009 (0.004)
mean % ELL 0.002 (0.003)
mean % Black 0.017 (0.046)
mean % Hispanic �0.021 (0.035)
mean % Asian �0.109 (0.042)
mean % Indian �0.172 (0.094)
mean 2008 2.869 (5.474)
mean 2010 �2.135 (4.139)
Intercept 222.121 (9.988)

N 132
�u0 2.712
�

2
�20� 216.599

power of group-specific predictors. Group-
level effects can be contrasted with within-
group effects through the construction of a
contextual effect, whose substantive interpre-
tation is described in Raudenbush and Bryk
(2002).A Wald test for the difference between
any two such between/within effects is analo-
gous to the Hausman test, and in our example,
for lagged standard, the difference between
0.032 and 0.164 has an associated �2

1 � 7�80,
with p � 0�005, which results in the same
inferential conclusion as the prior Hausman
test at conventional significance levels. Note
that the estimates from the hybrid model are
sensitive to the choice of predictors, just as
in any regression, be it using fixed or random
effects for groups.

5.5 CONCLUSION

The literature is full of advice, often conflict-
ing, about when to use fixed or random effects
models. Adding to this confusion, random
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effects models have several extensions which
relax the random effects assumption, includ-
ing the long history of hybrid models outlined
above. Standard random effects models can
obtain estimators that are potentially biased if
the random effects assumption is violated, but
fixed effect models come with an inability to
account for any time-invariant variables, dif-
ficulty in making out-of-sample predictions,
and statistical inefficiency. While the Haus-
man test is often noted as a tool for evaluat-
ing bias in the random effects model, Clark
and Linzer (2012) have shown through simu-
lations that it may not be reliable. Ultimately,
evaluating the balance of bias and variance in
the two techniques is not a simple task, but
applied researchers should not immediately
shy away from using a random effects model
because of the bias concerns, as the associ-
ated variance reduction may be worthwhile.
Our example above serves a useful guide
for other potential analyses in which one fits
fixed effects, random effects, and hybrid mod-
els. By exploring the relationship between all
three estimates, researchers can more com-
pletely understand the associations and poten-
tial effects of some forms of confounding.

NOTES

1 Editors’ note: In this chapter, the underlying model
is effectively the same throughout, but by changing
assumptions about model parameters and, more
importantly, by changing the estimator, different
goals are achieved. These competing goals are
the subject of much debate in the applied statis-
tics literature; this chapter describes the assump-
tions underpinning various estimators and reframes
some of the debate in terms of between- and
within-group predictor effects.

2 ��0 j is only approximately equal to the right-hand
side of equation (5.4) because the actual fitting
techniques are slightly more complex. Statistical
programs fit the models through either Bayesian
inference or an augmented least squares technique
(see Gelman and Hill, 2007, sections 18.3�18.4 for
detailed descriptions on both techniques and exten-
sions for more complex multilevel models). In the
first technique, one uses an iterative algorithm that
alternatively estimates the particular intercepts, and
the means and variances, called the hyperparam-
eters, which in our case above includes � 2

u0
, � 2

y ,

and �0 (Lindley and Smith, 1972; Efron and Mor-
ris, 1975). In the second technique, one develops a
weighted least squares regression (Afshartous and
de Leeuw, 2005, pp. 112�13).

3 This is why fixed effects are sometimes called
‘‘unmodeled effects’’ and random effects are called
‘‘modeled effects’’ (Bafumi and Gelman, 2006).
Additionally, see Gelman (2005) or Gelman and Hill
(2007, p. 245) for a discussion of all the conflict-
ing different meanings of the term ‘‘fixed effects’’.
Here, we mean the fifth definition in that list.

4 The degrees of freedom associated with the
demeaning of the outcomes require an adjustment
to the standard error of the estimated effects. The
reader may also be concerned that from a multilevel
perspective, these models ignore the within-group
correlation between observations. However, the
demeaning process accounts for a group-constant
effect, which captures a specific form of within-
group correlation, analogous to first differencing
with pre/post designs.

5 The following account applies to balanced data
where the group size is the same for all groups.
Unbalanced data require some adjustments.

6 Specifically, if the within variation is small, the fixed
effects estimates may not be asymptotically normal
and this may invalidate the Hausman test (Hahn,
Ham, and Moon, 2011).

7 Little has been written about the relative efficiency
of this compared to the fixed effects estimator, but
our own simulations suggest that the precision is
comparable in singly-nested models.

8 For more information on these assessments, includ-
ing subjects and grade levels tested, see http:
//nces.ed.gov/nationsreportcard/.
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