Mixed models for the analysis of categorical repeated measures

Geert Verbeke
geert.verbeke@med.kuleuven.be
Biostatistical Centre, K.U.Leuven, Belgium
Joint work with Geert Molenberghs and many others

Overview

- Example: Rat data
- The linear mixed model
- Example: Toenail data
- The generalized linear mixed model
- Estimation methods
- Parameter interpretation
- Example: Theophylline data
- The (generalized) non-linear mixed model

Example: Rat data

- Research question (Dentistry, K.U.Leuven):

How does craniofacial growth depend on testosteron production ?

- Randomized experiment in which 50 male Wistar rats are randomized to:
- Control (15 rats)
- Low dose of Decapeptyl (18 rats)
- High dose of Decapeptyl (17 rats)

Measured outcome(s)

- Treatment starts at the age of 45 days; measurements taken every 10 days, from day 50 on.
- The responses are distances (pixels) between well defined points on x-ray pictures of the skull of each rat:

Individual profiles

Control

High dose

Low dose

Complication: Dropout due to anaesthesia (56\%)

A statistical model

- Transformation of the time scale to linearize the profiles:

$$
\text { Age } \longrightarrow t=\ln [1+(\text { Age }-45) / 10)]
$$

- A linear mixed model:

$$
Y_{i}(t)= \begin{cases}\left(\beta_{0}+b_{1 i}\right)+\left(\beta_{1}+b_{2 i}\right) t+\varepsilon_{i j}, & \text { if low dose } \\ \left(\beta_{0}+b_{1 i}\right)+\left(\beta_{2}+b_{2 i}\right) t+\varepsilon_{i j}, & \text { if high dose } \\ \left(\beta_{0}+b_{1 i}\right)+\left(\beta_{3}+b_{2 i}\right) t+\varepsilon_{i j}, & \text { if control }\end{cases}
$$

- β_{0} : average response at the start of the treatment
- β_{1}, β_{2}, and β_{3} : average time effect for each treatment group

The linear mixed model

$$
\boldsymbol{Y}_{\boldsymbol{i}}=X_{i} \boldsymbol{\beta}+Z_{i} \boldsymbol{b}_{\boldsymbol{i}}+\boldsymbol{\varepsilon}_{\boldsymbol{i}}
$$

$$
\boldsymbol{b}_{\boldsymbol{i}} \sim N(\mathbf{0}, D)
$$

$$
\varepsilon_{i} \sim N\left(\mathbf{0}, \sigma^{2} I\right)
$$

independent

Terminology:

- Fixed effects: $\boldsymbol{\beta}$
- Random effects: b_{i}
- Variance components: elements in D and σ^{2}

$$
b_{1}, \ldots, b_{N}, \varepsilon_{1}, \ldots, \varepsilon_{N}
$$

The implied marginal model

$$
\boldsymbol{Y}_{\boldsymbol{i}}=X_{i} \boldsymbol{\beta}+Z_{i} \boldsymbol{b}_{\boldsymbol{i}}+\boldsymbol{\varepsilon}_{i}
$$

$$
\left\{\begin{aligned}
\boldsymbol{b}_{i} & \sim N(\mathbf{0}, D) \\
\varepsilon_{i} & \sim N\left(\mathbf{0}, \sigma^{2} I\right)
\end{aligned}\right.
$$

$$
\Longrightarrow \quad \boldsymbol{Y}_{i} \sim N\left[X_{i} \boldsymbol{\beta}, V_{i}=Z_{i} D Z_{i}^{\prime}+\sigma^{2} I\right]
$$

$$
\left\{\begin{array}{l}
f\left(\boldsymbol{y}_{\boldsymbol{i}} \mid b_{i}\right) \\
f\left(\boldsymbol{b}_{\boldsymbol{i}}\right)
\end{array}\right.
$$

$\Longrightarrow \quad f\left(\boldsymbol{y}_{\boldsymbol{i}}\right)$

Mixed model and marginal model are NOT equivalent !

Estimation and inference

- Based on marginal model: $\boldsymbol{Y}_{i} \sim N\left(X_{i} \boldsymbol{\beta}, V_{i}=Z_{i} D Z_{i}^{\prime}+\sigma^{2} I\right)$
- Independence across subjects
- Estimation based on likelihood principles
- Inference:
- Wald tests, t-tests, F-tests
- LR tests

Results for rat data

Fitted average profiles

H_{0} : equal slopes
($p=0.1013$)

Example: Toenail data

- Toenail Dermatophyte Onychomycosis
- Randomized, double-blind, parallel group, comparing 2 oral compounds (A and B), 2×189 patients
- Research question:

Severity relative to treatment of TDO ?

- 12 months of follow up, 3 months of treatment
- Measurements at months $0,1,2,3,6,9,12$.

Frequencies at each visit

Toenail data

A statistical model

- $Y_{i j}$ is binary severity indicator for subject i at visit j.
- Model:

$$
\begin{aligned}
Y_{i j} \mid b_{i} & \sim \operatorname{Bernoulli}\left(\pi_{i j}\right) \\
\log \left(\frac{\pi_{i j}}{1-\pi_{i j}}\right) & =\beta_{0}+b_{i}+\beta_{1} T_{i}+\beta_{2} t_{i j}+\beta_{3} T_{i} t_{i j}
\end{aligned}
$$

- Notation:
- T_{i} : treatment indicator for subject i
- $t_{i j}$: time point at which j th measurement is taken for i th subject

Distributional assumptions

- As for the linear model:
- Measurements are assumed independent, conditional on the random effects:

$$
f_{i}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\beta}\right)=\prod_{j=1}^{n_{i}} f_{i j}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\beta}\right)
$$

- Random effects b_{i} are assumed $N(\mathbf{0}, D)$
- The random effects generate an association structure for the repeated measurements
- Estimation and inference will again be based on the marginal likelihood

The marginal likelihood

- Assuming independent subjects,

$$
\begin{aligned}
L(\boldsymbol{\beta}, D) & =\prod_{i=1}^{N} f_{i}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{\beta}, D\right) \\
& =\prod_{i=1}^{N} \int f_{i}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\beta}\right) f\left(\boldsymbol{b}_{\boldsymbol{i}} \mid D\right) d \boldsymbol{b}_{\boldsymbol{i}}
\end{aligned}
$$

- Unlike in the normal linear model, the integrals can no longer be worked out analytically, and approximations are required:
- Approximation of integrand
- Approximation of data
- Approximation of integral

Laplace approximation of integrand

- Integrals in $L(\boldsymbol{\beta}, D)$ can be written in the form $I=\int e^{Q(\boldsymbol{b})} d \boldsymbol{b}$
- Second-order Taylor expansion of $Q(\boldsymbol{b})$ around the mode yields

$$
Q(\boldsymbol{b}) \approx Q(\widehat{\boldsymbol{b}})+\frac{1}{2}(\boldsymbol{b}-\widehat{\boldsymbol{b}})^{\prime} Q^{\prime \prime}(\widehat{\boldsymbol{b}})(\boldsymbol{b}-\widehat{\boldsymbol{b}}),
$$

- Quadratic term leads to re-scaled normal density. Hence,

$$
I \approx(2 \pi)^{q / 2}\left|-Q^{\prime \prime}(\widehat{\boldsymbol{b}})\right|^{-1 / 2} e^{Q(\widehat{\boldsymbol{b}})}
$$

- Exact approximation in case of normal kernels
- Good approximation in case of many repeated measures per subject

Approximation of data

- Re-write GLMM as:

$$
Y_{i j}=\mu_{i j}+\varepsilon_{i j}=h\left(\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{b}_{\boldsymbol{i}}\right)+\varepsilon_{i j}
$$

- Linear Taylor expansion for $\mu_{i j}$:
- Penalized quasi-likelihood (PQL): Around current $\widehat{\boldsymbol{\beta}}$ and $\widehat{b_{i}}$
- Marginal quasi-likelihood (MQL): Around current $\widehat{\boldsymbol{\beta}}$ and $b_{i}=0$
- An approximate linear mixed model is obtained which yields updates for $\widehat{\beta}$ and $\widehat{b_{i}}$

PQL versus MQL

- MQL only performs reasonably well if random-effects variance is (very) small
- Both perform bad for binary outcomes with few repeated measurements per cluster
- With increasing number of measurements per subject:
- MQL remains biased
- PQL consistent
- Improvements possible with higher-order Taylor expansions

Approximation of integral

- Approximate each integral by the surface of rectangles
- The higher the number Q of intervals, the more accurate the approximation will be
- 'Gaussian quadrature' is optimal in our situation

Adaptive Gaussian quadrature

Adapt nodes and weights to the 'support' of the function to be integrated:

Gaussian Quadrature

Adaptive Quadrature

Adaptive verus non-adaptive Gaussian quadrature

- Typically, adaptive Gaussian quadrature needs (much) less quadrature points than classical Gaussian quadrature.
- On the other hand, adaptive Gaussian quadrature is much more time consuming.
- Adaptive Gaussian quadrature of order one is equivalent to Laplace transformation.

Example: Quadrature for toenail Data

	Gaussian quadrature					
	$Q=3$	$Q=5$	$Q=10$	$Q=20$	$Q=50$	
β_{0}	$-1.52(0.31)$	$-2.49(0.39)$	$-0.99(0.32)$	$-1.54(0.69)$	$-1.65(0.43)$	
β_{1}	$-0.39(0.38)$	$0.19(0.36)$	$0.47(0.36)$	$-0.43(0.80)$	$-0.09(0.57)$	
β_{2}	$-0.32(0.03)$	$-0.38(0.04)$	$-0.38(0.05)$	$-0.40(0.05)$	$-0.40(0.05)$	
β_{3}	$-0.09(0.05)$	$-0.12(0.07)$	$-0.15(0.07)$	$-0.14(0.07)$	$-0.16(0.07)$	
τ	$2.26(0.12)$	$3.09(0.21)$	$4.53(0.39)$	$3.86(0.33)$	$4.04(0.39)$	

	Adaptive Gaussian quadrature				
	$Q=3$	$Q=5$	$Q=10$	$Q=20$	$Q=50$
β_{0}	$-2.05(0.59)$	$-1.47(0.40)$	$-1.65(0.45)$	$-1.63(0.43)$	$-1.63(0.44)$
β_{1}	$-0.16(0.64)$	$-0.09(0.54)$	$-0.12(0.59)$	$-0.11(0.59)$	$-0.11(0.59)$
β_{2}	$-0.42(0.05)$	$-0.40(0.04)$	$-0.41(0.05)$	$-0.40(0.05)$	$-0.40(0.05)$
β_{3}	$-0.17(0.07)$	$-0.16(0.07)$	$-0.16(0.07)$	$-0.16(0.07)$	$-0.16(0.07)$
τ	$4.51(0.62)$	$3.70(0.34)$	$4.07(0.43)$	$4.01(0.38)$	$4.02(0.38)$

Conclusions

- Different Q can lead to considerable differences in estimates and standard errors:
- For example, using non-adaptive quadrature, with $Q=3$, we found no difference in time effect between both treatment groups ($t=-0.09 / 0.05, p=0.0833$).
- Using adaptive quadrature, with $Q=50$, we find a significant interaction between the time effect and the treatment ($t=-0.16 / 0.07, p=0.0255$).
- Assuming that $Q=50$ is sufficient, the 'final' results are well approximated with smaller Q under adaptive quadrature, but not under non-adaptive quadrature.

Comparison of approximations: Toenail data

- Adaptive Gaussian Quadrature, $Q=50$
- MQL and PQL

Parameter	QUAD	PQL	MQL
Intercept group A	$-1.63(0.44)$	$-0.72(0.24)$	$-0.56(0.17)$
Intercept group B	$-1.75(0.45)$	$-0.72(0.24)$	$-0.53(0.17)$
Slope group A	$-0.40(0.05)$	$-0.29(0.03)$	$-0.17(0.02)$
Slope group B	$-0.57(0.06)$	$-0.40(0.04)$	$-0.26(0.03)$
Var. random intercepts $\left(\tau^{2}\right)$	$15.99(3.02)$	$4.71(0.60)$	$2.49(0.29)$

Fitting generalized linear mixed models in SAS

- MQL/PQL:

```
proc glimmix data=test method=RSPL ;
class idnum;
model onyresp (event='1') = treatn time treatn*time
    / dist=binary solution;
random intercept / subject=idnum;
run;
```


- (Adaptive) quadrature / Laplace:

```
proc nlmixed data=test noad qpoints=3;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5 sigma=3.9;
teta = beta0 + b + beta1*treatn + beta2*time + beta3*timetr;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ~ binary(p);
random b ~ normal(0,sigma**2) subject=idnum;
run;
```

Toenail data: Fitted model

- The fitted model for the toenail data is given by

$$
P\left(Y_{i j}=1 \mid b_{i}\right)=\left\{\begin{array}{l}
\frac{\exp \left(-1.6308+b_{i}-0.4043 t_{i j}\right)}{1+\exp \left(-1.6308+b_{i}-0.4043 t_{i j}\right)} \\
\frac{\exp \left(-1.7454+b_{i}-0.5657 t_{i j}\right)}{1+\exp \left(-1.7454+b_{i}-0.5657 t_{i j}\right)}
\end{array}\right.
$$

- Parameters need to be interpreted with care !
- This will be explained in the context of the logistic mixed model with random intercepts.

The logistic mixed model with random intercepts

$$
P\left(Y_{i}(t)=1 \mid b_{i}\right)=\frac{\exp \left(\beta_{0}+b_{i}+\beta_{1} t\right)}{1+\exp \left(\beta_{0}+b_{i}+\beta_{1} t\right)}
$$

Subject-specific evolutions

Average subject

Subject with average regression coefficients, i.e., $b_{i}=0$

$$
P\left(Y_{i}(t)=1 \mid b_{i}=0\right)=\frac{\exp \left(\beta_{0}+\beta_{1} t\right)}{1+\exp \left(\beta_{0}+\beta_{1} t\right)}
$$

Evolution of average subject

Average evolution

$$
P\left(Y_{i}(t)=1\right)=E\left[P\left(Y_{i j}=1 \mid b_{i}\right)\right]=E\left[\frac{\exp \left(\beta_{0}+b_{i}+\beta_{1} t\right)}{1+\exp \left(\beta_{0}+b_{i}+\beta_{1} t\right)}\right]
$$

Average evolution

Conclusion

Average evolution \neq Evolution average subject

- Parameters in the mixed model have a subject-specific interpretation, not a population-averaged one.
- The problem arises from the fact that, $E[g(Y)] \neq g[E(Y)]$, unless for linear functions, such as in the case of linear mixed models:
- Conditional mean: $E\left(\boldsymbol{Y}_{\boldsymbol{i}} \mid \boldsymbol{b}_{\boldsymbol{i}}\right)=X_{i} \boldsymbol{\beta}+Z_{i} \boldsymbol{b}_{\boldsymbol{i}}$
- Average subject: $E\left(\boldsymbol{Y}_{i} \mid b_{i}=\mathbf{0}\right)=X_{i} \boldsymbol{\beta}$
- Marginal mean: $E\left(\boldsymbol{Y}_{\boldsymbol{i}}\right)=X_{i} \boldsymbol{\beta}$

How to derive the marginal evolution?

- Directly fit a marginal model (e.g., GEE)
- Based on a mixed model, calculation of average evolution requires evaluation of

$$
P\left(Y_{i}(t)=1\right)=E\left[P\left(Y_{i j}=1 \mid b_{i}\right)\right]=E\left[\frac{\exp \left(\beta_{0}+b_{i}+\beta_{1} t\right)}{1+\exp \left(\beta_{0}+b_{i}+\beta_{1} t\right)}\right]
$$

- This cannot be done analytically. Hence, approximations are needed:
- Numerical quadrature
- Sampling techniques

Toenail data: Fitted model

$$
P\left(Y_{i j}=1 \mid b_{i}\right)=\left\{\begin{array}{l}
\frac{\exp \left(-1.6308+b_{i}-0.4043 t_{i j}\right)}{1+\exp \left(-1.6308+b_{i}-0.4043 t_{i j}\right)} \\
\frac{\exp \left(-1.7454+b_{i}-0.5657 t_{i j}\right)}{1+\exp \left(-1.7454+b_{i}-0.5657 t_{i j}\right)}
\end{array}\right.
$$

Toenail data: Average subject / average evolution

Treatment: - A — B

Theophylline data

- Theophylline: anti-asthmatic agent, administered orally
- 12 subjects, dose at $t=0$
- Blood samples at 10 time points over the following 25 hours
- Outcome of interest: Theophylline concentration

Individual profiles

Theophylline Data

A statistical model

- A one-compartment open model with first-order absorption and elimination

$$
Y_{i j}=C_{i}\left(t_{i j}\right)=\frac{k_{a i} k_{e i} d_{i}}{C \ell_{i}\left(k_{a i}-k_{e i}\right)} \times\left[\exp \left(-k_{e i} t_{i j}\right)-\exp \left(-k_{a i} t_{i j}\right)\right]+\varepsilon_{i j}
$$

- Parameter interpretation:
- $k_{a i}$: fractional absorption rate for subject i
- $k_{e i}$: fractional elimination rate for subject i
- $C \ell_{i}$: clearance for subject i

Reparameterization

- In order to restrict $k_{a i}, k_{e i}$, and $C \ell_{i}$ to be positive:

$$
\begin{aligned}
C \ell_{i} & =\exp \left(\beta_{1}+b_{i 1}\right), \\
k_{a, i} & =\exp \left(\beta_{2}+b_{i 2}\right), \\
k_{e, i} & =\exp \left(\beta_{3}+b_{i 3}\right) .
\end{aligned}
$$

- $b_{i 1}, b_{i 2}$, and $b_{i 3}$ are assumed multivariate normal with mean 0

Model fitting

- As for the generalized linear model:
- Measurements are assumed independent, conditional on the random effects:

$$
f_{i}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\beta}\right)=\prod_{j=1}^{n_{i}} f_{i j}\left(y_{i j} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\beta}\right)
$$

- Assuming independent subjects,

$$
L(\boldsymbol{\beta}, D)=\prod_{i=1}^{N} f_{i}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{\beta}, D\right)=\prod_{i=1}^{N} \int f_{i}\left(\boldsymbol{y}_{\boldsymbol{i}} \mid \boldsymbol{b}_{\boldsymbol{i}}, \boldsymbol{\beta}\right) f\left(\boldsymbol{b}_{\boldsymbol{i}} \mid D\right) d \boldsymbol{b}_{\boldsymbol{i}}
$$

- ML estimation using Gaussian quadrature methods

Results

Parameter Estimate (s.e.)

Residual variance:
$\sigma^{2} \quad 0.623$ (0.083)
Random-effect variances:

d_{11}	$0.057(0.022)$
d_{12}	$-0.012(0.018)$
d_{22}	$0.264(0.054)$
d_{13}	$0.030(0.020)$
d_{23}	$-0.025(0.017)$
d_{33}	$0.035(0.017)$

Observed and fitted profiles

Remarks

- The non-linear nature of the model implies that the parameters have subject-specific interpretations
- Calculation of marginal averages again requires numerical integration or sampling methods
- Generalized linear mixed models can also be extended to accommodate non-linear predictors.

Conclusions

- Mixed models provide a general framework for the analysis of continuous and discrete repeated measurements, based on linear and non-linear models
- In general, parameters in mixed models do not immediately yield population-based inferences
- Mixed models specify the full distribution of \boldsymbol{Y}_{i} :
- Calculation of joint probabilities
- Missing data issues
- Mixed models are more sensitive to model miss-specification than most models for cross-sectional data

