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® Research question (Dentistry, K.U.Leuven):

How does craniofacial growth
depend on testosteron production ?

® Randomized experiment in which 50 male Wistar rats are
randomized to:

» Control (15 rats)
» Low dose of Decapeptyl (18 rats)

» High dose of Decapeptyl (17 rats)




® Treatment starts at the age of 45 days; measurements taken every
10 days, from day 50 on.

® The responses are distances (pixels) between well defined points
on x-ray pictures of the skull of each rat:
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Complication: Dropout due to anaesthesia (56%)




® Transformation of the time scale to linearize the profiles:
Age — t=1In[l+ (Age —45)/10)]
® A linear mixed model:

2

(Bo + b1:) + (81 + bai)t + 45,  if low dose,

Yi(t) = (Bo+0b1i) + (B2 + ba)t + 45,  if high dose,

(B0 + b1s) + (B3 + b2i)t + €45,  if control
® [,: average response at the start of the treatment

» 3, B>, and (3: average time effect for each treatment group



XiB+ Zib; + €

b; ~ N(0,D),

Ei N(O,O‘QI),

bl)"’7bN7€17"’7€N

independent

Terminology:
» Fixed effects: 3
» Random effects: b;

» Variance components:
elements in D and o2



XiB+ Zib; + €;

( b, ~N(0,D) | = | Yi~N[X,8,V;=2,DZ +0*I]

E; N(O,O‘2I)

{ f(yilbs) . )

Mixed model and marginal model are NOT equivalent !




#® Based on marginal model: Y; ~ N(X;8,V; = Z;DZ! + ¢°I)
® Independence across subjects
® Estimation based on likelihood principles

® Inference:

» Wald tests, t-tests, F'-tests

» LR tests
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® Toenail Dermatophyte Onychomycosis

® Randomized, double-blind, parallel group, comparing 2 oral
compounds (A and B), 2 x 189 patients

® Research question:

Severity relative to treatment of TDO ?

» 12 months of follow up, 3 months of treatment

® Measurements at months 0, 1, 2, 3, 6, 9, 12.



Toenail data
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® Y, is binary severity indicator for subject ¢ at visit ;.

® Model:
}/ZJ|b7J ~ Bernoulli(mj),
log (1 m‘; ) = o+ bi + 01T + Patij + PsTitiy
— i
® Notation:

» T;: treatment indicator for subject ¢

» t;;: time point at which jth measurement is taken for ith subject



® As for the linear model:

» Measurements are assumed independent, conditional on the
random effects:

fiwilbi, B) = ][ fis(wis1bi, B)
j=1

» Random effects b; are assumed N (0, D)
# The random effects generate an association structure for the

repeated measurements

® Estimation and inference will again be based on the marginal
likelihood




» Assuming independent subjects,

L(B, D)

N
1=1

N
11 / Fi(wilbi, B) £ (bs| D) db;
1=1

® Unlike in the normal linear model, the integrals can no longer be
worked out analytically, and approximations are required:

» Approximation of integrand
» Approximation of data

# Approximation of integral




Integrals in L(3, D) can be written in the form I = /eQ(b)db

® Second-order Taylor expansion of Q(b) around the mode yields

AN

N 1 N AT
Q) ~ Q(b)+ 5(b-b)'Q"(b)(b D),
» Quadratic term leads to re-scaled normal density. Hence,

-1/2 3
‘ cQ(b)

I~ (2m)"2|-Q" (b)
® Exact approximation in case of normal kernels

® Good approximation in case of many repeated measures per
subject



®» Re-write GLMM as:
Yij = wij+ey = h(zy;B+ 2i;bi) + &
® Linear Taylor expansion for j;;:
» Penalized quasi-likelinood (PQL): Around current B and b;
# Marginal quasi-likelinood (MQL): Around current Bandb; =0

® An approximate linear mixed model is obtained which yields
updates for 3 and b;



» MQL only performs reasonably well if random-effects variance is
(very) small

® Both perform bad for binary outcomes with few repeated
measurements per cluster

® With increasing number of measurements per subject:

» MQL remains biased

» PQL consistent

® Improvements possible with higher-order Taylor expansions




® Approximate each integral by
the surface of rectangles

® The higher the number @ of in-
tervals, the more accurate the
approximation will be

® ‘Gaussian quadrature’ is optimal
in our situation

f(zJo(z)




Adapt nodes and weights to the ‘support’ of the function to be
integrated:

Gaussian Quadrature

A

f(z)p(z)

Adaptive Quadrature

f(z)p(z)




® Typically, adaptive Gaussian quadrature needs (much) less
quadrature points than classical Gaussian quadrature.

® On the other hand, adaptive Gaussian quadrature is much more
time consuming.

® Adaptive Gaussian quadrature of order one is equivalent to Laplace
transformation.



Gaussian quadrature

Q=5 Q =10 Q = 20 Q = 50

Bo -2.49 (0.39) -0.99(0.32) -1.54(0.69) -1.65(0.43)
51 0.19 (0.36) 0.47 (0.36) -0.43(0.80) -0.09 (0.57)
B2 -0.38 (0.04) -0.38 (0.05) -0.40(0.05) -0.40 (0.05)
B3 -0.12(0.07)  -0.15(0.07) -0.14(0.07)  -0.16 (0.07)
T 3.09 (0.21) 4.53 (0.39) 3.86 (0.33) 4.04 (0.39)

Adaptive Gaussian quadrature

Q=5 Q = 10 Q = 20 Q = 50

Bo -1.47 (0.40)  -1.65(0.45) -1.63(0.43) -1.63(0.44)
51 -0.09 (0.54) -0.12(0.59) -0.11(0.59) -0.11 (0.59)
B2 -0.40 (0.04) -0.41(0.05) -0.40(0.05) -0.40 (0.05)
B3 -0.16 (0.07)  -0.16 (0.07) -0.16 (0.07) -0.16 (0.07)
T 3.70 (0.34)  4.07 (0.43)  4.01(0.38)  4.02(0.38)




® Different () can lead to considerable differences in estimates and
standard errors:

» For example, using non-adaptive quadrature, with Q) = 3, we
found no difference in time effect between both treatment groups
(t = —0.09/0.05,p = 0.0833).

» Using adaptive quadrature, with @ = 50, we find a significant
interaction between the time effect and the treatment
(t = —0.16/0.07, p = 0.0255).

® Assuming that () = 50 is sufficient, the ‘final’ results are well
approximated with smaller () under adaptive quadrature, but not
under non-adaptive quadrature.



® Adaptive Gaussian Quadrature, Q = 50

» MQL and PQL

Parameter QUAD PQL MQL

Intercept group A —1.63(0.44) —-0.72(0.24) —0.56(0.17)
Intercept group B —1.75(0.45) —-0.72(0.24) —0.53(0.17)
Slope group A —0.40 (0.05) —-0.29(0.08) —0.17(0.02)
Slope group B —0.57 (0.06) —0.40(0.04) —0.26(0.03)
Var. random intercepts (72) 15.99 (3.02) 4.71 (0.60) 2.49 (0.29)




$ MQL/PQL:

proc glimmix data=test method=RSPL ;

class idnum;

model onyresp (event=’1l’) = treatn time treatnxtime
/ dist=binary solution;

random intercept / subject=idnum;

run;

® (Adaptive) quadrature / Laplace:

proc nlmixed data=test noad gpoints=3;

parms betal=-1.6 betal=0 beta2=-0.4 beta3=-0.5 sigma=3.9;
teta = betal + b + betal*treatn + betalxtime + betal3xtimetr;
expteta = exp(teta);

p = expteta/ (l+expteta);

model onyresp ~ binary(p);

random b 7 normal (0, sigma*x2) subject=idnum;

run;



® The fitted model for the toenail data is given by

( exp(—1.6308 4+ b; — 0.4043t;;)
1 4+ exp(—1.6308 + b; — 0.4043t;;)

exp(—1.7454 4+ b; — 0.5657t;;)
| 1+ exp(—1.7454 + b; — 0.5657t;;)

P(Yi; =1|b;)) = X

® Parameters need to be interpreted with care !

® This will be explained in the context of the logistic mixed model with
random intercepts.



exp(Bo + b; + Bit)
1+ exp(By + bi + i)

P(Y;(t) = 1]b;)

Subject — specific evolutions

Time (months)



Subject with average regression coefficients, i.e., b; = 0

exp(Bo + Bit)
1 + exp(Bo + Bit)

P(Y;(t) = 1[b; = 0)

Evolution of average subject




exp(Bo + b; + Git)
1+ exp(Bo + b; + Bit)

EIP(Y, = 11)] = E|

Average evolution




Average evolution # Evolution average subject

® Parameters in the mixed model have a subject-specific
interpretation, not a population-averaged one.

® The problem arises from the fact that, E{g(Y)] # g[E(Y)], unless
for linear functions, such as in the case of linear mixed models:

# Conditional mean: E(Y;|b;) = X;8 + Z;b;
# Average subject: E(Y;|b; =0) = X,
# Marginal mean: E(Y;) = X3




® Directly fit a marginal model (e.g., GEE)

® Based on a mixed model, calculation of average evolution requires
evaluation of

exp(Bo + b; + Fit)
1+ exp(Bo + b; + Bit)

P(Yi(t)=1) = E[P(Yy=1b)] = E

® This cannot be done analytically. Hence, approximations are
needed:

» Numerical quadrature

» Sampling techniques
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® Theophylline: anti-asthmatic agent, administered orally
® 12 subjects, dose att =0
® Blood samples at 10 time points over the following 25 hours

® Outcome of interest: Theophylline concentration
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® A one-compartment open model with first-order absorption and
elimination

kaikez’di
Yij = Ci(ti;) = Cli(kai — kei) < Lexp(heitiy) = exp(=Raitiy)} + <y

® Parameter interpretation:

» k,;: fractional absorption rate for subject i
» k.;: fractional elimination rate for subject 7

» CY;: clearance for subject i




® |In order to restrict k,;, ke;, and CZ; to be positive:

Cl; = exp(B1+bin),
ko = exp(Ba2+ bia),
kei = exp(Bs+ bis).

® b;1, b;o, and b;3 are assumed multivariate normal with mean 0



® As for the generalized linear model:

» Measurements are assumed independent, conditional on the
random effects:

ng

fiwilbi, B) = ][ fis(wis1bi, B)

J=1

# Assuming independent subjects,
N N
8.0) = [[#wis.0) =[] [ fiwilbs.9)f:ID)ab
=1 =1

® ML estimation using Gaussian quadrature methods



Parameter Estimate (s.e.)

Parameter Estimate (s.e.)

Fixed effects:

81 (C1) -3.277 (0.046)
Bs (ka) 0.537 (0.063)
Bs (ke) -2.454 (0.064)

Residual variance:

o2 0.623 (0.083)

Random-effect variances:

d11 0.057 (0.022)
di2 -0.012 (0.018)
da2 0.264 (0.054)
d13 0.030 (0.020)
das3 -0.025 (0.017)

0.035 (0.017)
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® The non-linear nature of the model implies that the parameters
have subject-specific interpretations

® Calculation of marginal averages again requires numerical
integration or sampling methods

® Generalized linear mixed models can also be extended to
accommodate non-linear predictors.




» Mixed models provide a general framework for the analysis of
continuous and discrete repeated measurements, based on linear
and non-linear models

® In general, parameters in mixed models do not immediately yield
population-based inferences

®» Mixed models specify the full distribution of Y;:

» Calculation of joint probabilities

# Missing data issues

®» Mixed models are more sensitive to model miss-specification than
most models for cross-sectional data
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