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Example: Rat data

Research question (Dentistry, K.U.Leuven):

How does craniofacial growth
depend on testosteron production ?

Randomized experiment in which 50 male Wistar rats are
randomized to:

Control (15 rats)

Low dose of Decapeptyl (18 rats)

High dose of Decapeptyl (17 rats)
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Measured outcome(s)

Treatment starts at the age of 45 days; measurements taken every
10 days, from day 50 on.

The responses are distances (pixels) between well defined points
on x-ray pictures of the skull of each rat:
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Individual profiles

Complication: Dropout due to anaesthesia (56%)
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A statistical model

Transformation of the time scale to linearize the profiles:

Age −→ t = ln[1 + (Age − 45)/10)]

A linear mixed model:

Yi(t) =





(β0 + b1i) + (β1 + b2i)t + εij , if low dose,

(β0 + b1i) + (β2 + b2i)t + εij , if high dose,

(β0 + b1i) + (β3 + b2i)t + εij , if control

β0: average response at the start of the treatment

β1, β2, and β3: average time effect for each treatment group
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The linear mixed model

Yi = Xiβ + Zibi + εi

bi ∼ N(0, D),

εi ∼ N(0, σ2I),

b1, . . . , bN , ε1, . . . , εN

independent

Terminology:

Fixed effects: β

Random effects: bi

Variance components:
elements in D and σ2
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The implied marginal model

Yi = Xiβ + Zibi + εi

��
�����

�����

bi ∼ N(0, D)

εi ∼ N(0, σ2I)

=⇒ Yi ∼ N
�

Xiβ, Vi = ZiDZ′

i + σ2I

�





f(yi|bi)

f(bi)
=⇒ f(yi)

Mixed model and marginal model are NOT equivalent !
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Estimation and inference

Based on marginal model: Yi ∼ N(Xiβ, Vi = ZiDZ ′

i + σ2I)

Independence across subjects

Estimation based on likelihood principles

Inference:

Wald tests, t-tests, F -tests

LR tests
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Results for rat data

H0 : equal slopes
(p =0.1013)
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Example: Toenail data

Toenail Dermatophyte Onychomycosis

Randomized, double-blind, parallel group, comparing 2 oral
compounds (A and B), 2 × 189 patients

Research question:

Severity relative to treatment of TDO ?

12 months of follow up, 3 months of treatment

Measurements at months 0, 1, 2, 3, 6, 9, 12.
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Frequencies at each visit
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A statistical model

Yij is binary severity indicator for subject i at visit j.

Model:

Yij |bi ∼ Bernoulli(πij),

log
(

πij

1 − πij

)
= β0 + bi + β1Ti + β2tij + β3Titij

Notation:

Ti: treatment indicator for subject i

tij : time point at which jth measurement is taken for ith subject
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Distributional assumptions

As for the linear model:

Measurements are assumed independent, conditional on the
random effects:

fi(yi|bi, β) =

ni∏

j=1

fij(yij |bi, β)

Random effects bi are assumed N(0, D)

The random effects generate an association structure for the
repeated measurements

Estimation and inference will again be based on the marginal
likelihood
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The marginal likelihood

Assuming independent subjects,

L(β, D) =
N∏

i=1

fi(yi|β, D)

=

N∏

i=1

∫
fi(yi|bi, β)f(bi|D)dbi

Unlike in the normal linear model, the integrals can no longer be
worked out analytically, and approximations are required:

Approximation of integrand

Approximation of data

Approximation of integral
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Laplace approximation of integrand

Integrals in L(β, D) can be written in the form I =

∫
eQ(b)db

Second-order Taylor expansion of Q(b) around the mode yields

Q(b) ≈ Q(b̂) +
1

2
(b − b̂)′Q′′(b̂)(b − b̂),

Quadratic term leads to re-scaled normal density. Hence,

I ≈ (2π)q/2
∣∣∣−Q′′(b̂)

∣∣∣
−1/2

eQ(

	

b).

Exact approximation in case of normal kernels

Good approximation in case of many repeated measures per
subject
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Approximation of data

Re-write GLMM as:

Yij = µij + εij = h(x′

ijβ + z′

ijbi) + εij

Linear Taylor expansion for µij :

Penalized quasi-likelihood (PQL): Around current β̂ and b̂i

Marginal quasi-likelihood (MQL): Around current β̂ and bi = 0

An approximate linear mixed model is obtained which yields
updates for β̂ and b̂i
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PQL versus MQL

MQL only performs reasonably well if random-effects variance is
(very) small

Both perform bad for binary outcomes with few repeated
measurements per cluster

With increasing number of measurements per subject:

MQL remains biased

PQL consistent

Improvements possible with higher-order Taylor expansions
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Approximation of integral

Approximate each integral by
the surface of rectangles

The higher the number Q of in-
tervals, the more accurate the
approximation will be

‘Gaussian quadrature’ is optimal
in our situation
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Adaptive Gaussian quadrature

Adapt nodes and weights to the ‘support’ of the function to be
integrated:
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Adaptive verus non-adaptive Gaussian quadrature

Typically, adaptive Gaussian quadrature needs (much) less
quadrature points than classical Gaussian quadrature.

On the other hand, adaptive Gaussian quadrature is much more
time consuming.

Adaptive Gaussian quadrature of order one is equivalent to Laplace
transformation.
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Example: Quadrature for toenail Data

Gaussian quadrature

Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

β0 -1.52 (0.31) -2.49 (0.39) -0.99 (0.32) -1.54 (0.69) -1.65 (0.43)

β1 -0.39 (0.38) 0.19 (0.36) 0.47 (0.36) -0.43 (0.80) -0.09 (0.57)

β2 -0.32 (0.03) -0.38 (0.04) -0.38 (0.05) -0.40 (0.05) -0.40 (0.05)

β3 -0.09 (0.05) -0.12 (0.07) -0.15 (0.07) -0.14 (0.07) -0.16 (0.07)

τ 2.26 (0.12) 3.09 (0.21) 4.53 (0.39) 3.86 (0.33) 4.04 (0.39)

Adaptive Gaussian quadrature

Q = 3 Q = 5 Q = 10 Q = 20 Q = 50

β0 -2.05 (0.59) -1.47 (0.40) -1.65 (0.45) -1.63 (0.43) -1.63 (0.44)

β1 -0.16 (0.64) -0.09 (0.54) -0.12 (0.59) -0.11 (0.59) -0.11 (0.59)

β2 -0.42 (0.05) -0.40 (0.04) -0.41 (0.05) -0.40 (0.05) -0.40 (0.05)

β3 -0.17 (0.07) -0.16 (0.07) -0.16 (0.07) -0.16 (0.07) -0.16 (0.07)

τ 4.51 (0.62) 3.70 (0.34) 4.07 (0.43) 4.01 (0.38) 4.02 (0.38)
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Conclusions

Different Q can lead to considerable differences in estimates and
standard errors:

For example, using non-adaptive quadrature, with Q = 3, we
found no difference in time effect between both treatment groups
(t = −0.09/0.05, p = 0.0833).

Using adaptive quadrature, with Q = 50, we find a significant
interaction between the time effect and the treatment
(t = −0.16/0.07, p = 0.0255).

Assuming that Q = 50 is sufficient, the ‘final’ results are well
approximated with smaller Q under adaptive quadrature, but not
under non-adaptive quadrature.
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Comparison of approximations: Toenail data

Adaptive Gaussian Quadrature, Q = 50

MQL and PQL

Parameter QUAD PQL MQL

Intercept group A −1.63 (0.44) −0.72 (0.24) −0.56 (0.17)

Intercept group B −1.75 (0.45) −0.72 (0.24) −0.53 (0.17)

Slope group A −0.40 (0.05) −0.29 (0.03) −0.17 (0.02)

Slope group B −0.57 (0.06) −0.40 (0.04) −0.26 (0.03)

Var. random intercepts (τ2) 15.99 (3.02) 4.71 (0.60) 2.49 (0.29)
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Fitting generalized linear mixed models in SAS

MQL/PQL:
proc glimmix data=test method=RSPL ;

class idnum;

model onyresp (event=’1’) = treatn time treatn*time

/ dist=binary solution;

random intercept / subject=idnum;

run;

(Adaptive) quadrature / Laplace:
proc nlmixed data=test noad qpoints=3;

parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5 sigma=3.9;

teta = beta0 + b + beta1*treatn + beta2*time + beta3*timetr;

expteta = exp(teta);

p = expteta/(1+expteta);

model onyresp ˜ binary(p);

random b ˜ normal(0,sigma**2) subject=idnum;

run;
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Toenail data: Fitted model

The fitted model for the toenail data is given by

P (Yij = 1|bi) =

��
�������

�������

exp(−1.6308 + bi − 0.4043tij)

1 + exp(−1.6308 + bi − 0.4043tij)

exp(−1.7454 + bi − 0.5657tij)

1 + exp(−1.7454 + bi − 0.5657tij)

Parameters need to be interpreted with care !

This will be explained in the context of the logistic mixed model with
random intercepts.
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The logistic mixed model with random intercepts

P (Yi(t) = 1|bi) =
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)
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Average subject

Subject with average regression coefficients, i.e., bi = 0

P (Yi(t) = 1|bi = 0) =
exp(β0 + β1t)

1 + exp(β0 + β1t)
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Average evolution

P (Yi(t) = 1) = E[P (Yij = 1|bi)] = E

[
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)

]
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Conclusion

Average evolution 6= Evolution average subject

Parameters in the mixed model have a subject-specific
interpretation, not a population-averaged one.

The problem arises from the fact that, E[g(Y )] 6= g[E(Y )], unless
for linear functions, such as in the case of linear mixed models:

Conditional mean: E(Yi|bi) = Xiβ + Zibi

Average subject: E(Yi|bi = 0) = Xiβ

Marginal mean: E(Yi) = Xiβ
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How to derive the marginal evolution ?

Directly fit a marginal model (e.g., GEE)

Based on a mixed model, calculation of average evolution requires
evaluation of

P (Yi(t) = 1) = E[P (Yij = 1|bi)] = E

[
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)

]

This cannot be done analytically. Hence, approximations are
needed:

Numerical quadrature

Sampling techniques
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Toenail data: Fitted model

P (Yij = 1|bi) =

��
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�������

exp(−1.6308 + bi − 0.4043tij)

1 + exp(−1.6308 + bi − 0.4043tij)

exp(−1.7454 + bi − 0.5657tij)

1 + exp(−1.7454 + bi − 0.5657tij)
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Toenail data: Average subject / average evolution
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Theophylline data

Theophylline: anti-asthmatic agent, administered orally

12 subjects, dose at t = 0

Blood samples at 10 time points over the following 25 hours

Outcome of interest: Theophylline concentration

PAGE, Bruges, June 2006 – p. 34/42



Individual profiles
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A statistical model

A one-compartment open model with first-order absorption and
elimination

Yij = Ci(tij) =
kaikeidi

C`i(kai − kei)
× [exp(−keitij) − exp(−kaitij)] + εij

Parameter interpretation:

kai: fractional absorption rate for subject i

kei: fractional elimination rate for subject i

C`i: clearance for subject i
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Reparameterization

In order to restrict kai, kei, and C`i to be positive:

C`i = exp(β1 + bi1),

ka,i = exp(β2 + bi2),

ke,i = exp(β3 + bi3).

bi1, bi2, and bi3 are assumed multivariate normal with mean 0
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Model fitting

As for the generalized linear model:

Measurements are assumed independent, conditional on the
random effects:

fi(yi|bi, β) =

ni∏

j=1

fij(yij |bi, β)

Assuming independent subjects,

L(β, D) =
N∏

i=1

fi(yi|β, D) =
N∏

i=1

∫
fi(yi|bi, β)f(bi|D)dbi

ML estimation using Gaussian quadrature methods
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Results

Parameter Estimate (s.e.)

Fixed effects:

β1 (Cl) -3.277 (0.046)

β2 (ka) 0.537 (0.063)

β3 (ke) -2.454 (0.064)

Parameter Estimate (s.e.)

Residual variance:

σ2 0.623 (0.083)

Random-effect variances:

d11 0.057 (0.022)

d12 -0.012 (0.018)

d22 0.264 (0.054)

d13 0.030 (0.020)

d23 -0.025 (0.017)

d33 0.035 (0.017)
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Observed and fitted profiles
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Remarks

The non-linear nature of the model implies that the parameters
have subject-specific interpretations

Calculation of marginal averages again requires numerical
integration or sampling methods

Generalized linear mixed models can also be extended to
accommodate non-linear predictors.
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Conclusions

Mixed models provide a general framework for the analysis of
continuous and discrete repeated measurements, based on linear
and non-linear models

In general, parameters in mixed models do not immediately yield
population-based inferences

Mixed models specify the full distribution of Yi:

Calculation of joint probabilities

Missing data issues

Mixed models are more sensitive to model miss-specification than
most models for cross-sectional data
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