Semiparametric smoothing methods

- Assumptions: Only one observation y_i per subject at time point t_i .
- Data are thus of the form

$$(t_i, y_i), \quad i = 1, \dots, N.$$

• **Goal:** Estimation of the unknown mean curve $\mu(t)$ in the model

$$Y_i = \mu(t_i) + \epsilon_i,$$

where the ϵ_i are independent with mean 0.

Analysis of Longitudinal Data, Summer Term 2015

Kernel methods: "Sliding window"

- Consider a window around time point t_1 .
- Let $\widehat{\mu}(t_1)$ be the average of all y_i corresponding to t_i in that window.
- Analogously for $\widehat{\mu}(t_2), \widehat{\mu}(t_3), \ldots$
- $\rightarrow\,$ Sliding window for the estimation.

Kernel methods: "Sliding window"

The width of the window is important:

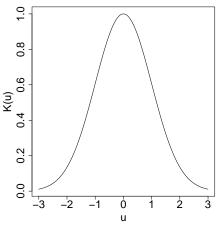
- If the width is chosen very small, the window can include only one observation at the one extreme → interpolation instead of smoothing!
- If the width is chosen very wide, the window can include all observations at the other extreme. This yields a constant:

$$\widehat{\mu}(t) = \frac{1}{N} \sum_{i=1}^{N} y_i.$$

Kernel methods in general

- With the sliding window method, each observation gets the weight 1 ("in the window") oder 0 ("outside the window").
- This method is a special case of kernel smoothing methods.
- More generally, choose a smooth weight function that gives more weight to observations nearer in time than to observations further away.
- Common choice: Gaussian kernel

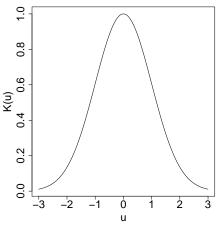
 $K(u) = \exp(-0.5u^2).$



Kernel methods in general

- With the sliding window method, each observation gets the weight 1 ("in the window") oder 0 ("outside the window").
- This method is a special case of kernel smoothing methods.
- More generally, choose a smooth weight function that gives more weight to observations nearer in time than to observations further away.
- Common choice: Gaussian kernel

 $K(u) = \exp(-0.5u^2).$



Kernel methods in general

• Definition of the kernel estimator:

$$\widehat{\mu}(t) = \sum_{i=1}^{N} \frac{w(t, t_i, h)}{\sum_{i=1}^{N} w(t, t_i, h)} y_i,$$

where $w(t, t_i, h) = K((t - t_i)/h)$ are the weights and h is the bandwidth.

- Larger values for h yield smoother curves.
- We'll discuss the choice of h in a few slides.
- How is the kernel K defined for the sliding window method?

Smoothing splines (Silverman, 1985)

• If we assume $\mu(t)$ can be well approximated by a twice continuous differentiable function s(t) with second derivative s''(t), consider minimizing

$$J(\lambda) = \sum_{i=1}^{N} (y_i - s(t_i))^2 + \lambda \int \{s''(t)\}^2 dt.$$

- The solution can be shown to be a natural cubic **spline** (a two times differentiable function consisting of piecewise cubic polynomials) with knots at the t_i and can be obtained from (relatively simple) linear equations.
- Penalized splines are an alternative that is computationally less demanding and can be incorporate into more complex models, see Chapter 6.2.

Analysis of Longitudinal Data, Summer Term 2015

Lo(w)ess smoothing (Cleveland, 1979)

- LOWESS = LOcally WEighted regression Scatterplot Smoothing
- Function lowess in R
- Lo(w)ess can be seen as an extension of kernel methods: at each point t_i, a local polynomial regression is fitted using weighted least squares, giving more weight to observations closer by.
- There is an iterative version that is more robust to outliers, giving them smaller weight.

Choice of smoothing parameters

- In all three approaches (kernel, splines, lowess), the smoothness of the estimated curves is controlled by one smoothing parameter (e.g. h, λ). This parameter is typically chosen to optimize a criterion.
- **Goal:** compromise between bias and variance.
- A common criterion that combines bias and variance is the mean squared error, MSE (analogously for h instead of λ):

$$MSE(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \{y_i^* - \widehat{\mu}(t_i; \lambda)\}^2,$$

where y_i^* is a new observation at time point t_i .

Choice of smoothing parameters

$$MSE(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \{y_i^* - \widehat{\mu}(t_i; \lambda)\}^2$$

Observations y_i which were used for estimation of μ should not be compared to $\hat{\mu}(t_i)$: This would lead to always choosing the smallest band width h or penalty λ and to interpolation instead of a smooth curve (overfitting).

Solution: cross-validation (analogously for h instead of λ)

$$CV(\lambda) = \frac{1}{N} \sum_{i=1}^{N} \{y_i - \hat{\mu}^{-i}(t_i; \lambda)\}^2,$$

where $\hat{\mu}^{-i}(t_i; \lambda)$ is obtained without observation *i*. See Chapter 6.2 for mixed model-based estimation of smoothing parameters.

Analysis of Longitudinal Data, Summer Term 2015

Note

- Please note that these smoothing methods (and the criterion for the choice of the smoothing parameter) assume independent and identically distributed (i.i.d.) errors.
- Also, dropout and missing values are not taken into account.
- They can still be useful **exploratory** tools.
- Example CD4 data: See lab.
- For how to incorporate smooth mean functions in mixed models accounting for repeated measurements, please see Chapter 6.2.

