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Introduction

So far we have always assumed the following normal distribution:

Yi ∼ Nni(Xiβ,Vi).

For non-normal, e.g.

• binary

• count

• non-normal continuous

responses, the models we discussed so far are not suitable. After some
examples (8.1) we will thus discuss different extensions of generalized linear
models (8.2) to the longitudinal setting (8.3).

Analysis of Longitudinal Data, Summer Term 2015 1



Overview Chapter 8 - Non-normal longitudinal data

8.1 Data examples

8.2 Generalized linear models (GLMs)

8.3 Extending GLMs to longitudinal data
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Binary example: The toenail data

• Randomized, double-blind, multi-center study for the comparison of
two oral treatments (A and B) for the infection toenail dermatophyte
onychomycosis (TDO) (Molenberghs & Verbeke, 2005)

• 2 × 189 patients

• 12 weeks of treatment, 48 weeks total.

• Measurements once per month during treatment, every 3 months after-
wards → 7 measurements per patient (only 76% have all observations).

• Binary response Y : infection severe yes/no (1/0).
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Binary example: The toenail data

Treatment A Treatment B

Baseline
Month 1
Month 2
Month 3
Month 6
Month 9
Month 12

#Y = 1 N %
54 146 37.0%
49 141 34.7%
44 138 31.9%
29 132 22.0%
14 130 10.8%
10 117 8.5%
14 133 10.5%

#Y = 1 N %
55 148 37.2%
48 147 32.6%
40 145 27.6%
29 140 20.7%
8 133 6.0%
8 127 6.3%
6 131 4.6%
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Binary example: The toenail data
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Ordinal example: The analgesic trial

• 395 patients are given an analgesic treatment for pain (Molenberghs &
Verbeke, 2005)

• The patients are asked after 3, 6, 9 and 12 months about their satisfaction
(only 40% have all four observations).

• Response: “Global Satisfaction Assessment” (GSA) with five levels:

1: very good, 2: good, 3: indifferent, 4: bad, 5: very bad.

• GSA is sometimes dichotomized.

• Available covariates: Age, sex, duration of pain in years before treatment
started, etc.
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Ordinal example: The analgesic trial

GSA M 3 M 6 M 9 M 12
1 55 14.3% 38 12.6% 40 17.6% 30 13.5%
2 112 29.1% 84 27.8% 67 29.5% 66 29.6%
3 151 39.2% 115 38.1% 76 33.5% 97 43.5%
4 52 13.5% 51 16.9% 33 14.5% 27 12.1%
5 15 3.9% 14 4.6% 11 4.9% 3 1.4%
Total 385 302 227 223
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Count example: Epileptic seizures

• Randomized, double-blind, multi-center study on the effectiveness of a
new anti-epileptic drug (Diggle et al, 2002)

• Two groups: progabide / placebo (+ standard treatment)

• N = 59 patients

• Baseline Yi1: Number of seizures during baseline period of eight weeks

• Yi2, Yi3, Yi4, Yi5: Number of seizures in the two weeks preceeding the
planned visits at weeks 2, 4, 6, 8.
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Count example: Epileptic seizures

Average number of seizures (and standard deviation) per week:

Treatment Baseline Week 2 Week 4 Week 6 Week 8
Progabide 3.95 4.29 4.21 4.06 3.35

(3.5) (9.1) (5.9) (6.9) (5.6)

Placebo 3.85 4.68 4.14 4.39 3.98
(3.3) (5.1) (4.1) (7.3) (3.8)
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Count example: Epileptic seizures
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Further examples

Count data

• number of side effects after
treatment

• number of living piglets in a
litter

• number of episodes in multiple
sclerosis patients

• . . .

Binary data

• Presence (yes/no) of respira-
tory infection in children

• Pain relief (yes/no) after an-
algesic treatment

• Correct solution (yes/no) to a
task or test question

• . . .
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Overview Chapter 8 - Non-normal longitudinal data

8.1 Data examples

8.2 Generalized linear models (GLMs)

8.3 Extending GLMs to longitudinal data
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Recap: The exponential family

A distribution belongs to the exponential family if its density is of the
form

f(y|θ, φ) = exp{[yθ − ψ(θ)]/φ+ c(y, φ)},
where θ (natural parameter) and φ (scale parameter) are unknown and ψ(.)
and c(., .) are known functions. The first two moments are given by

E(Y ) = µ = ψ′(θ)
Var(Y ) = σ2 = φψ′′(θ).

Importantly, µ and σ2 are connected via

σ2 = φψ′′(ψ′−1(µ)) =: φv(µ),

where v then corresponds to the variance function.
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Recap: Generalized linear models (GLMs)

• Y1, . . . , YN independent outcome variables

• x1, . . . ,xN corresponding vectors of p covariates

Assumptions:

• Each Yi has a density f(yi|θi, φ) from the exponential family with
obervation-specific θi.

• µi = E(Yi) is of the form
µi = h(ηi) = h(xTi β),

where h(.) is a known function and β is a p-vector of regression coefficients.
The function g = h−1 is called link function. If the natural (or canonical)
link function h(.) = ψ′(.) is used, the natural parameter is assumed to
satisfy the linear relationship θi = xTi β.
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Summary of the GLM approach

• Distributional assumption: Choice of the density, i.e. of functions ψ(·)
and c(·, ·). This yields:

Var(Yi) = φv(µi) = φψ′′(ψ′−1(µi)).

v(·) is called “variance function” and φ is a scale parameter.

• Systematic component: Define the linear predictor (choose covariates)

ηi = xTi β.

• Link function: Choose the link function g(·), which links µi to the linear
predictor ηi,

g(µi) = ηi = xTi β.

The natural link function g(·) = ψ′−1(·) yields θi = xTi β.
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GLM special cases: normal distribution

If Yi ∼ N (µi, σ2), the density f can be written as

f(yi) = exp
{

1
σ2

(
yiµi −

µ2
i

2

)
−
(

log(2πσ2)
2

+
y2
i

2σ2

)}
.

The normal distribution belongs to the exponential family with θi = µi,
ψ(θi) = θ2i /2 and φ = σ2, and a GLM is obtained with

• Distributional assumption:

v(µi) = 1

• Link function: The natural link is the identity link

g(µi) = µi = ηi = xTi β
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GLM special cases: Bernoulli distribution

If Yi ∼ B(πi), we can write the density f with µi = πi as

f(yi) = exp
{
yi log

(
µi

1− µi

)
+ log(1− µi)

}
.

The Bernoulli distribution belongs to the exponential family with
θi = log[µi/(1 − µi)], ψ(θi) = log(1 + exp(θi)) and φ = 1, and a GLM is
obtained with

• Distributional assumption:

v(µi) = µi(1− µi)
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• Link function: The natural link is the logit link

g(µi) = log[µi/(1− µi)] = log[πi/(1− πi)] = xTi β.

This yields

P (Y = 1|xi) = πi =
exp(xTi β)

1 + exp(xTi β)
.

Sometimes the logit link is replaced by the probit link g(·) = Φ−1(·), where
Φ is the cumulative distribution function of the standard normal distribution.
Both functions behave similarly.
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GLM special cases: the Poisson distribution

If Yi ∼ Poi(λi), the density f can be written with µi = λi as

f(yi) = exp {yi logµi − µi − log yi!} .

The Poisson distribution belongs to the exponential family with θi = log(µi),
ψ(θi) = exp(θi) and φ = 1, and a GLM is obtained with

• Distributional assumption:

v(µi) = µi

• Link function: The natural link is the log link

g(µi) = log(µi) = xTi β,

which yields µi = exp(xTi β).
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Summary special cases

distribution φ variance function canonical link function
Normal σ2 v(µ) = 1 µ = η (identity)

Bernoulli 1 v(µ) = µ(1− µ) log
(

µ
1−µ

)
= η (logit)

Poisson 1 v(µ) = µ log(µ) = η (log)
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ML estimation for GLMs

• For independent observations, the likelihood is given by

L(β, φ) =
N∏
i=1

exp
[

1
φ

(yiθi − ψ(θi)) + c(yi, φ)
]
,

where θi depends on β.

• The log-likelihood is then obtained as

l(β, φ) =
1
φ

N∑
i=1

[yiθi − ψ(θi)] +
N∑
i=1

c(yi, φ).
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ML estimation for GLMs: Score equations

• Taking the derivative w.r.t. β and equating it to zero ( ∂l∂β = 0) yields
the so-called score equations

S(β) =
N∑
i=1

∂θi
∂β

[yi − ψ′(θi)] = 0.

• With the canonical link function this yields

N∑
i=1

xi(yi − µi) = 0.

• These equations hold for all exponential family distributions as long as
the canonical link is used!
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ML estimation for GLMs: Algorithm

• The solution to the equations

N∑
i=1

xi(yi − µi) = 0.

yields the ML estimator for β.

• Standard algorithm: Newton-Raphson (iterative).
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ML estimation for GLMs

S(β) =
N∑
i=1

∂θi
∂β

[yi − ψ′(θi)] = 0

As µi = ψ′(θi) and vi := v(µi) = ψ′′(θi), we have

∂µi
∂β

= ψ′′(θi)
∂θi
∂β

= vi
∂θi
∂β

and thus

S(β) =
N∑
i=1

∂µi
∂β

v−1
i (yi − µi) = 0.

We will need this in Chapter 10 for the generalized estimating equations
(GEEs).
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Overview Chapter 8 - Non-normal longitudinal data

8.1 Data examples

8.2 Generalized linear models (GLMs)

8.3 Extending GLMs to longitudinal data
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Overview non-normal longitudinal data

For the extenstion of generalized linear models (GLMs) to longitudinal data
there are essentially three approaches:

1. Marginal models, quasi-likelihood approach (GEE) (Chapter 10)

2. Subject specific models: generalized linear mixed models (Chapter 9)

3. Transition models (at the end if there is time)
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Different viewpoints of correlation

• Marginal models: Marginally, observations are correlated. We can model
this and/or account for it with robust standard errors (GEE).

• Mixed models: Observations are correlated, because they are from the
same subject and share the same underlying processes. Conditional on
these, observations are independent.
(Or residual serial correlation is left, then additionally model that.)

• Transition/Markov models: Observations are correlated, because the
past influences the presence.
(Typical here: Past = last q observations → Markov property.)
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Difference to the normal response case

• For the linear mixed model we had

E(Yi) = E(Xiβ + Zibi) = Xiβ + ZiE(bi) = Xiβ.

• Marginal view:
Yi ∼ N (Xiβ,ZiDZTi + Σi)

• β can be interpreted as a population parameter.

• For non-normal responses this is no longer the case:

– In the marginal model inference is about the population (“population-
average”).

– In mixed models the focus is on the subjects (“subject-specific”).
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Short overview marginal models

Similarly to 8.2:
Var(Yij) = φv(µij)

where µij = E(Yij) and

g(µij) = ηij = xTijβ

Difference to the GLM: Yi1, . . . , Yini are (conditional on the covariates)
associated.

Assumption: This association is a function of additional parameters α. For
example, α can include pairwise correlations or log-odds-ratios.
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Example logistic model

Consider as an example a logistic model for the probability of having an
infection (Y ), given (no) vitamin A deficiency (x). Cross-sectional model:

logit Pr(Yi = 1) = β0 + β1xi.

Marginal model: Models mean, variance and correlation

logit Pr(Yij = 1) = logit µij = β0 + β1xij

Var(Yij) = µij(1− µij)
Corr(Yij, Yik) = ρ(µij, µik; α)
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Example logistic model

Mixed model: Each individual has its own propensity for an infection

logit Pr(Yij = 1|bi) = (β∗0 + bi) + β∗1xij,

bi
iid∼ (0, d2)

Transition model: The probability for an infection depends on whether
there was an infection at the last visit

logit Pr(Yij = 1|Yij−1, . . . , Yi1) = β∗∗0 + β∗∗1 xij + γYij−1
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Example logistic model

Now, the β parameters have quite different interpretations and will
typically differ.

• β1 is the log-odds ratio of infection between vitamin A deficient and
replete children. It is a population-averaged parameter (marginal
interpretation).

• β∗1 is the log-odds ratio of infection when a child is deficient relative to
when that same child is not (conditional interpretation, conditional on
individual propensity to infection). The resulting change in absolute risk
depends on the baseline rate for that child.
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Example logistic model

• β∗∗1 is the log-odds ratio of infection for vitamin A deficiency versus
repletion among the group of children free of infection [the infected
group] at the last visit (conditional interpretation, conditional on infection
status at last visit).

For the logistic regression: (Neuhaus et al, 1991; Zeger et al, 1988)

|β1| ≤ |β∗1 | with equality iff β∗1 = 0, and an increase in discrepancy with d2.

If bi
iid∼ N(0, d), then β1 ≈ (c2d+ 1)−1/2β∗1 with c2 ≈ 0.346.

(Analogously component-wise for a vector β.)
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Marginal and mixed logistic model
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Pr(Yij = 1) =
∫

Pr(Yij = 1|bi)dF (bi) =
∫

exp(β∗0 + bi + β∗1xij)
1 + exp(β∗0 + bi + β∗1xij)

f(bi)dbi
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Marginal and mixed logistic model
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The three approaches - some pros & cons

Marginal models (Chapter 10):

+ Separate modeling of mean and correlation. Correlation model does not
change interpretation of β parameters.

± Are appropriate for inference about the population mean.

+ Only requires specification of the first two moments, not the entire
likelihood (less assumptions).

− No likelihood-based inference (but instead: GEE).

+ Can easily accommodate unequally spaced time points and unbalanced
data.
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The three approaches - some pros & cons

Mixed models (Chapters 3-7, 9):

± Can make inference about individuals rather than population averages.

+ Can easily accommodate unequally spaced time points, unbalanced data.

+ Flexible, can additonally model clustered data, smooth functions (pena-
lized spline smoothing) etc.

± Parsimonious modeling of covariance. But random effects imply specific
correlation structure, less flexibility.

+ Allows likelihood-based inference.

− Fitting of models often hard (especially for generalized case).
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The three approaches - some pros & cons

Transition/Markov models:

− Most meaningful for equally spaced time points tij and less suited to
unequally spaced data or missing data.

+ Might be a very meaningful way to think of the underlying process in
some cases (e.g. for categorical data when thinking of transitions between
“states”)

+ Allows likelihood-based inference (typically conditional on first q obser-
vations).
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