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Overview Chapter 2 - Exploring and displaying
longitudinal data

2.1 Graphical display of longitudinal data

2.2 Exploring the mean: semiparametric smoothing

2.3 Exploring the correlation

2.4 Useful R commands

The graphical display of longitudinal data is important for building appro-
priate models and should always be the first step!
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Notation again

• N is the number of subjects.

• ni is the number of observations for the ith subject, i = 1, . . . , N .
Remember, balanced data have n1 = . . . = nN .

• n =
∑N

i=1 ni is the total number of observations across all subjects.

• Response: Yi = (Yi1, . . . , Yini
)T is the vector of ni observations for the

ith subject (random vector).

• We observe yij, for i = 1, . . . , N and j = 1, . . . , ni.
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Graphical display of longitudinal data

The display used depends on the data at hand and the questions of
interest, but some general recommendations - wherever possible - are:

1. show the original data instead of aggregate measures as much as possible

2. also make general trends in the data visible

3. make it easy to pick out individuals and extreme or outlying observati-
ons/subjects

4. highlight cross-sectional as well as longitudinal patterns.
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Display of individual profiles - Sleep deprivation data
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This data set

• is balanced

• has few subjects
(N = 18)
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Display of individual profiles: Standardization

It can be useful to display centered and/or standardized profiles. For
balanced data, one shows

yc
ij = (yij − yj), or ys

ij = (yij − yj)/sj,

where yj =
∑N

i=1 yij is the arithmetic mean and sj is the empirical standard
deviation at tj. (E.g. subtract a smooth mean, see 2.2, for unbalanced data.)

• Standardization can be helpful if the variance changes with time (zooming
in for areas with low variance).

• Easier ’tracking’ of individuals and whether they keep their relative
positions.
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Display of individual profiles
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Mean and variance curves over time

0 2 4 6 8

26
0

30
0

34
0

Mean

Days

A
ve

ra
ge

 r
ea

ct
io

n 
tim

e

0 2 4 6 8

10
00

20
00

30
00

40
00

Variance

Days

V
ar

ia
nc

e 
re

ac
tio

n 
tim

e

Analysis of Longitudinal Data, Summer Term 2015 7



Display of large longitudinal data sets - CD4+ counts

Graphs with all individual curves can be hard to distinguish for large N .
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Display of large longitudinal data sets

• It can then be useful to not show all individual curves.

• Alternatives:

– only show individual curves for some subjects
(the others e.g. as dots or thin grey lines),

– only show observations and a smooth mean (see 2.2)
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Individual curves only for some subjects

Randomly chosen subjects:
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Disadvantage: The randomly drawn subjects need not be representative.
Extreme curves are unlikely to be shown.
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Individual curves only for some subjects

Alternatives: Choose subjects using a statistic, e.g. measuring

• the average level

• variability over time

• etc.

One option is to plot individuals with median residual values (after subtrac-
ting a mean curve, see 2.2) corresponding to certain quantils, e.g. minimum,
25% quantile, median, 75% quantile, maximum.
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Individual curves only for some subjects - by quantiles
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The Lasagna plot

Plots with individual curves are also called spaghetti plots. Swihart et
al., 2010 propose an alternative (also for large N) they term lasagna plots.

• The data is plotted as heat map with each column corresponding to one
time point and each row to a subject (the ’layers’).

• Subjects are ordered by some criterion that makes distinctions easier to
see, e.g. grouped by treatment groups and then ordered by ascending
average response value.

• Best suited to data with equal time points, tij ≡ tj, i.e. balanced data
or data with some missings, which are left white. (Otherwise, need to
handle time axis differently or use binning.)
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Spaghetthi and Lasagna plots for the TLC data
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Overview Chapter 2 - Exploring and displaying
longitudinal data

2.1 Graphical display of longitudinal data

2.2 Exploring the mean: semiparametric smoothing

2.3 Exploring the correlation

2.4 Useful R commands
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Fitting smooth curves

• For balanced data one can display the arithmetic mean at each time
point.

• For unbalanced data one can use smoothing methods. Three common
nonparametric regression techniques are

– Kernel methods
– Splines
– Lo(w)ess
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Semiparametric smoothing methods

• Assumptions: Only one observation yi per subject at time point ti.

• Data are thus of the form

(ti, yi), i = 1, . . . , N.

• Goal: Estimation of the unknown mean curve µ(t) in the model

Yi = µ(ti) + εi,

where the εi are independent with mean 0.
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Kernel methods: “Sliding window”

• Consider a window around time point t1.

• Let µ̂(t1) be the average of all yi corresponding to ti in that window.

• Analogously for µ̂(t2), µ̂(t3), . . ..

→ Sliding window for the estimation.
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Kernel methods: “Sliding window”

The width of the window is important:

• If the width is chosen very small, the window can include only one
observation at the one extreme → interpolation instead of smoothing!

• If the width is chosen very wide, the window can include all observations
at the other extreme. This yields a constant:

µ̂(t) =
1
N

N∑
i=1

yi.
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Kernel methods in general

• With the sliding window method, each observation gets the weight 1 (“in
the window”) oder 0 (“outside the window”).

• This method is a special case of kernel smoothing methods.

• More generally, choose a smooth weight function that gives more
weight to observations nearer in time than to observations further away.

• Common choice: Gaussian kernel

K(u) = exp(−0.5u2).
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Kernel methods in general

• Definition of the kernel estimator:

µ̂(t) =
N∑

i=1

w(t, ti, h)∑N
i=1w(t, ti, h)

yi,

where w(t, ti, h) = K ((t− ti)/h) are the weights and h is the bandwidth.

• Larger values for h yield smoother curves.

• We’ll discuss the choice of h in a few slides.

• How is the kernel K defined for the sliding window method?
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Smoothing splines (Silverman, 1985)

• If we assume µ(t) can be well approximated by a twice continuous diffe-
rentiable function s(t) with second derivative s′′(t), consider minimizing

J(λ) =
N∑

i=1

(yi − s(ti))2 + λ

∫
{s′′(t)}2dt.

• The solution can be shown to be a natural cubic spline (a two times
differentiable function consisting of piecewise cubic polynomials) with
knots at the ti and can be obtained from (relatively simple) linear
equations.

• Penalized splines are an alternative that is computationally less deman-
ding and can be incorporate into more complex models, see Chapter 6.2.
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Lo(w)ess smoothing (Cleveland, 1979)

• LOWESS = LOcally WEighted regression Scatterplot Smoothing

• Function lowess in R

• Lo(w)ess can be seen as an extension of kernel methods: at each point ti,
a local polynomial regression is fitted using weighted least squares, giving
more weight to observations closer by.

• There is an iterative version that is more robust to outliers, giving them
smaller weight.
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Choice of smoothing parameters

• In all three approaches (kernel, splines, lowess), the smoothness of the
estimated curves is controlled by one smoothing parameter (e.g. h, λ).
This parameter is typically chosen to optimize a criterion.

• Goal: compromise between bias and variance.

• A common criterion that combines bias and variance is the mean squared
error, MSE (analogously for h instead of λ):

MSE(λ) =
1
N

N∑
i=1

{y∗i − µ̂(ti;λ)}2,

where y∗i is a new observation at time point ti.
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Choice of smoothing parameters

MSE(λ) =
1
N

N∑
i=1

{y∗i − µ̂(ti;λ)}2

Observations yi which were used for estimation of µ should not be compared
to µ̂(ti): This would lead to always choosing the smallest band width h or
penalty λ and to interpolation instead of a smooth curve (overfitting).

Solution: cross-validation (analogously for h instead of λ)

CV (λ) =
1
N

N∑
i=1

{yi − µ̂−i(ti;λ)}2,

where µ̂−i(ti;λ) is obtained without observation i. See Chapter 6.2 for
mixed model-based estimation of smoothing parameters.
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Note

• Please note that these smoothing methods (and the criterion for the
choice of the smoothing parameter) assume independent and identically
distributed (i.i.d.) errors.

• Also, dropout and missing values are not
taken into account.

• They can still be useful exploratory tools.

• Example CD4 data: See lab.

• For how to incorporate smooth mean functions
in mixed models accounting for repeated measu-
rements, please see Chapter 6.2.
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Overview Chapter 2 - Exploring and displaying
longitudinal data

2.1 Graphical display of longitudinal data

2.2 Exploring the mean: semiparametric smoothing

2.3 Exploring the correlation

2.4 Useful R commands
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Exploring the correlation

• Data from the same subject tend to be more similar than data from
different subjects; longitudinal data are correlated data.

• Often observations closer in time are more similar than observations taken
further apart, i.e. the correlation is decreasing with the time difference.

• This correlation can be visualized with scatterplots.

• Consider the residuals
rij = yij − xT

ijβ̂,

where xij is the covariate vector for the jth measurement of the ith

subject and β̂ is estimated by a linear regression ignoring the correlation.
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Display of the correlation

• For equidistant time points that are the same across subjects, the
correlation can be displayed as scatterplot of rij vs. rik for each i, j, k.

• For non-equidistant time points, this would require first binning the time
points.

• Alternatively, one can plot the pair-wise products rijrik - as estimates of
the residual covariance - against their time distance |tij − tik|.

• Another alternative that does not require binning time points is the
(semi)variogram. More in Chapter 6.1.
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Overview Chapter 2 - Exploring and displaying
longitudinal data

2.1 Graphical display of longitudinal data

2.2 Exploring the mean: semiparametric smoothing

2.3 Exploring the correlation

2.4 Useful R commands
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Useful R commands

• reshape - reshapes longitudinal data between ’wide’ and ’long’ format

• groupedData

• plot for groupedData objects

• xyplot from the package lattice for data frames

More in the lab session.
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plot for groupedData objects
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Only suitable for a limited number of subjects!
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xyplot for data frames xyplot(y∼t|id,...)
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Only suitable for a small number of subjects!
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xyplot for data frames xyplot(..., groups=id,...)
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Also for somewhat larger numbers of subjects.
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Conclusion

• The data should always be displayed graphically before beginning with
the analysis.

• Graphics should be chosen appropriately to the data and questions at
hand!

• R offers functions for the display of longitudinal data.

• Exploring the (smooth) mean and correlation is helpful for model building.
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